Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import pickle | |
import joblib | |
import torch.nn.functional as F | |
from PIL import Image | |
import gradio as gr | |
from transformers import AutoModelForImageClassification | |
from torch import nn | |
from torchvision import transforms | |
from huggingface_hub import hf_hub_download | |
# Paths in Hugging Face model repository | |
MODEL_PATH = "DeiT_Model_Parameter.pth" | |
ENCODER_PATH = "label_encoder.pkl" | |
# Ensure device is set | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def load_label_encoder(): | |
# Load label encoder from Hugging Face repository | |
label_encoder_path = hf_hub_download(repo_id="bobs24/DeiT-Classification-Apparel", filename=ENCODER_PATH) | |
label_encoder = joblib.load(label_encoder_path) | |
return label_encoder | |
# Define the model class | |
class CustomModel(nn.Module): | |
def __init__(self, num_classes): | |
super(CustomModel, self).__init__() | |
self.base_model = AutoModelForImageClassification.from_pretrained( | |
"facebook/deit-base-patch16-224", | |
num_labels=num_classes, | |
ignore_mismatched_sizes=True | |
) | |
def forward(self, x): | |
return self.base_model(x).logits | |
def load_model(): | |
# Load the model from Hugging Face repository | |
model_path = hf_hub_download(repo_id="bobs24/DeiT-Classification-Apparel", filename=MODEL_PATH) | |
label_encoder = load_label_encoder() | |
model = CustomModel(num_classes=len(label_encoder.classes_)).to(device) | |
model.load_state_dict(torch.load(model_path, map_location=device)) | |
model.device = device | |
model.eval() | |
return model, label_encoder | |
# Load the model and label encoder | |
model, label_encoder = load_model() | |
# Preprocessing as per your training setup | |
preprocess = transforms.Compose([ | |
transforms.Resize(256), # Resize to 256x256 (a bit larger than 224) | |
transforms.CenterCrop(224), # Crop the center to 224x224 | |
transforms.ToTensor(), # Convert to tensor | |
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) # Normalize as per DeiT | |
]) | |
# Function to perform predictions and show probabilities | |
def predict(image): | |
if image is None: # Check if no image was provided | |
return "Please insert photo" | |
# Apply preprocessing to the input image | |
image = Image.fromarray(image).convert("RGB") | |
input_tensor = preprocess(image).unsqueeze(0).to(device) | |
# Perform inference | |
with torch.no_grad(): | |
output = model(input_tensor) | |
# Apply softmax to get probabilities | |
probabilities = F.softmax(output, dim=1) | |
# Get the predicted label and confidence | |
predicted_label = torch.argmax(probabilities, dim=1).item() | |
confidence = probabilities[0, predicted_label].item() | |
# Get the class name using label encoder | |
class_name = label_encoder.inverse_transform([predicted_label])[0] | |
return f"Predicted class: {class_name}, Confidence: {confidence:.4f}" | |
# Create Gradio interface | |
iface = gr.Interface(fn=predict, inputs=gr.Image(type="numpy"), outputs="text", live=True) | |
# Launch the interface | |
iface.launch() |