Spaces:
Paused
Paused
update app.py and deps
Browse files- app.py +60 -85
- requirements.txt +2 -2
app.py
CHANGED
@@ -5,101 +5,82 @@ from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
|
|
5 |
from hi_diffusers.schedulers.flash_flow_match import (
|
6 |
FlashFlowMatchEulerDiscreteScheduler,
|
7 |
)
|
8 |
-
from hi_diffusers.schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
9 |
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
|
10 |
|
11 |
# Constants
|
12 |
MODEL_PREFIX: str = "HiDream-ai"
|
13 |
LLAMA_MODEL_NAME: str = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
14 |
-
|
15 |
-
# Model configurations
|
16 |
MODEL_CONFIGS: dict[str, dict] = {
|
17 |
-
"
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
"shift": 6.0,
|
22 |
-
"scheduler": FlashFlowMatchEulerDiscreteScheduler,
|
23 |
-
},
|
24 |
-
"full": {
|
25 |
-
"path": f"{MODEL_PREFIX}/HiDream-I1-Full",
|
26 |
-
"guidance_scale": 5.0,
|
27 |
-
"num_inference_steps": 50,
|
28 |
-
"shift": 3.0,
|
29 |
-
"scheduler": FlowUniPCMultistepScheduler,
|
30 |
-
},
|
31 |
-
"fast": {
|
32 |
-
"path": f"{MODEL_PREFIX}/HiDream-I1-Fast",
|
33 |
-
"guidance_scale": 0.0,
|
34 |
-
"num_inference_steps": 16,
|
35 |
-
"shift": 3.0,
|
36 |
-
"scheduler": FlashFlowMatchEulerDiscreteScheduler,
|
37 |
-
},
|
38 |
}
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
# Supported image sizes
|
41 |
RESOLUTION_OPTIONS: list[str] = [
|
42 |
-
"1024
|
43 |
-
"768
|
44 |
-
"1360
|
45 |
-
"880
|
46 |
-
"1168
|
47 |
-
"1248
|
48 |
-
"832
|
49 |
]
|
50 |
|
51 |
-
# Model cache
|
52 |
-
loaded_models: dict[str, HiDreamImagePipeline] = {}
|
53 |
-
|
54 |
|
55 |
def parse_resolution(res_str: str) -> tuple[int, int]:
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
torch_dtype=torch.bfloat16,
|
79 |
-
).to("cuda")
|
80 |
-
|
81 |
-
scheduler = config["scheduler"](
|
82 |
-
num_train_timesteps=1000,
|
83 |
-
shift=config["shift"],
|
84 |
-
use_dynamic_shifting=False,
|
85 |
-
)
|
86 |
-
|
87 |
-
pipe = HiDreamImagePipeline.from_pretrained(
|
88 |
-
pretrained_model,
|
89 |
-
scheduler=scheduler,
|
90 |
-
tokenizer_4=tokenizer,
|
91 |
-
text_encoder_4=text_encoder,
|
92 |
-
torch_dtype=torch.bfloat16,
|
93 |
-
).to("cuda", torch.bfloat16)
|
94 |
-
|
95 |
-
pipe.transformer = transformer
|
96 |
-
return pipe
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
print("🔧 Preloading default model (full)...")
|
101 |
-
loaded_models["full"] = load_models("full")
|
102 |
-
print("✅ Model loaded.")
|
103 |
|
104 |
|
105 |
@spaces.GPU(duration=90)
|
@@ -109,12 +90,6 @@ def generate_image(
|
|
109 |
resolution: str,
|
110 |
seed: int,
|
111 |
) -> tuple[object, int]:
|
112 |
-
"""Generate image using HiDream pipeline."""
|
113 |
-
if model_type not in loaded_models:
|
114 |
-
print(f"📦 Lazy-loading model {model_type}...")
|
115 |
-
loaded_models[model_type] = load_models(model_type)
|
116 |
-
|
117 |
-
pipe: HiDreamImagePipeline = loaded_models[model_type]
|
118 |
config = MODEL_CONFIGS[model_type]
|
119 |
|
120 |
if seed == -1:
|
|
|
5 |
from hi_diffusers.schedulers.flash_flow_match import (
|
6 |
FlashFlowMatchEulerDiscreteScheduler,
|
7 |
)
|
|
|
8 |
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
|
9 |
|
10 |
# Constants
|
11 |
MODEL_PREFIX: str = "HiDream-ai"
|
12 |
LLAMA_MODEL_NAME: str = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
13 |
+
MODEL_PATH = "HiDream-ai/HiDream-I1-Dev"
|
|
|
14 |
MODEL_CONFIGS: dict[str, dict] = {
|
15 |
+
"guidance_scale": 0.0,
|
16 |
+
"num_inference_steps": 28,
|
17 |
+
"shift": 6.0,
|
18 |
+
"scheduler": FlashFlowMatchEulerDiscreteScheduler,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
}
|
20 |
|
21 |
+
# Model configurations
|
22 |
+
# MODEL_CONFIGS: dict[str, dict] = {
|
23 |
+
# "full": {
|
24 |
+
# "path": f"{MODEL_PREFIX}/HiDream-I1-Full",
|
25 |
+
# "guidance_scale": 5.0,
|
26 |
+
# "num_inference_steps": 50,
|
27 |
+
# "shift": 3.0,
|
28 |
+
# "scheduler": FlowUniPCMultistepScheduler,
|
29 |
+
# },
|
30 |
+
# "fast": {
|
31 |
+
# "path": f"{MODEL_PREFIX}/HiDream-I1-Fast",
|
32 |
+
# "guidance_scale": 0.0,
|
33 |
+
# "num_inference_steps": 16,
|
34 |
+
# "shift": 3.0,
|
35 |
+
# "scheduler": FlashFlowMatchEulerDiscreteScheduler,
|
36 |
+
# },
|
37 |
+
# }
|
38 |
+
|
39 |
# Supported image sizes
|
40 |
RESOLUTION_OPTIONS: list[str] = [
|
41 |
+
"1024 x 1024 (Square)",
|
42 |
+
"768 x 1360 (Portrait)",
|
43 |
+
"1360 x 768 (Landscape)",
|
44 |
+
"880 x 1168 (Portrait)",
|
45 |
+
"1168 x 880 (Landscape)",
|
46 |
+
"1248 x 832 (Landscape)",
|
47 |
+
"832 x 1248 (Portrait)",
|
48 |
]
|
49 |
|
|
|
|
|
|
|
50 |
|
51 |
def parse_resolution(res_str: str) -> tuple[int, int]:
|
52 |
+
return tuple(map(int, res_str.replace(" ", "").split("x")))
|
53 |
+
|
54 |
+
|
55 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained(LLAMA_MODEL_NAME, use_fast=False)
|
56 |
+
text_encoder = LlamaForCausalLM.from_pretrained(
|
57 |
+
LLAMA_MODEL_NAME,
|
58 |
+
output_hidden_states=True,
|
59 |
+
output_attentions=True,
|
60 |
+
torch_dtype=torch.bfloat16,
|
61 |
+
).to("cuda")
|
62 |
+
|
63 |
+
transformer = HiDreamImageTransformer2DModel.from_pretrained(
|
64 |
+
MODEL_PATH,
|
65 |
+
subfolder="transformer",
|
66 |
+
torch_dtype=torch.bfloat16,
|
67 |
+
).to("cuda")
|
68 |
+
|
69 |
+
scheduler = MODEL_CONFIGS["scheduler"](
|
70 |
+
num_train_timesteps=1000,
|
71 |
+
shift=MODEL_CONFIGS["shift"],
|
72 |
+
use_dynamic_shifting=False,
|
73 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
pipe = HiDreamImagePipeline.from_pretrained(
|
76 |
+
MODEL_PATH,
|
77 |
+
scheduler=scheduler,
|
78 |
+
tokenizer_4=tokenizer,
|
79 |
+
text_encoder_4=text_encoder,
|
80 |
+
torch_dtype=torch.bfloat16,
|
81 |
+
).to("cuda", torch.bfloat16)
|
82 |
|
83 |
+
pipe.transformer = transformer
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
@spaces.GPU(duration=90)
|
|
|
90 |
resolution: str,
|
91 |
seed: int,
|
92 |
) -> tuple[object, int]:
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
config = MODEL_CONFIGS[model_type]
|
94 |
|
95 |
if seed == -1:
|
requirements.txt
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
-
torch
|
2 |
torchvision>=0.20.1
|
3 |
diffusers>=0.32.1
|
4 |
transformers>=4.47.1
|
5 |
accelerate>=1.6.0
|
6 |
xformers
|
7 |
-
https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.
|
8 |
einops>=0.7.0
|
9 |
gradio>=5.23.3
|
10 |
spaces>=0.34.1
|
|
|
1 |
+
torch==2.6.0
|
2 |
torchvision>=0.20.1
|
3 |
diffusers>=0.32.1
|
4 |
transformers>=4.47.1
|
5 |
accelerate>=1.6.0
|
6 |
xformers
|
7 |
+
https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.6cxx11abiTRUE-cp310-cp310-linux_x86_64.whl
|
8 |
einops>=0.7.0
|
9 |
gradio>=5.23.3
|
10 |
spaces>=0.34.1
|