gutalk_st / app.py
blackwingedkite's picture
Update app.py
f4348d4
import streamlit as st
import torch
import transformers
from transformers import pipeline
from transformers import LlamaTokenizer, LlamaForCausalLM
import time
import csv
import locale
locale.getpreferredencoding = lambda: "UTF-8"
#https://huggingface.co/shibing624/chinese-alpaca-plus-7b-hf
#https://huggingface.co/ziqingyang/chinese-alpaca-2-7b
#https://huggingface.co/minlik/chinese-alpaca-plus-7b-merged
def generate_prompt(text):
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{text}
### Response:"""
tokenizer = LlamaTokenizer.from_pretrained('shibing624/chinese-alpaca-plus-7b-hf')
pipeline = pipeline(
"text-generation",
model="shibing624/chinese-alpaca-plus-7b-hf",
torch_dtype=torch.float32,
device_map="auto",
)
st.title("Chinese text generation alpaca2")
st.write("Enter a sentence and alpaca2 will answer:")
user_input = st.text_input("")
with open('alpaca_output.csv', 'a', newline='',encoding = "utf-8") as csvfile:
writer = csv.writer(csvfile)
# writer.writerow(["stockname",'prompt','answer','time'])
if user_input:
if user_input[0] == ".":
stockname = user_input[1:4]
analysis = user_input[4:]
text = f"""請以肯定和專業的語氣,一步一步的思考並回答以下關於{stockname}的問題,避免空洞的答覆:
- 請回答關於{stockname}的問題,請總結給予的資料以及資料解釋,並整合出金融上的洞見。\n
- 請不要生成任何資料沒有提供的數據,即便你已知道。\n
- 請假裝這些資料都是你預先知道的知識。因此,請不要提到「根據資料」、「基於上述資料」等回答
- 請不要說「好的、我明白了、根據我的要求、以下是我的答案」等贅詞,請輸出分析結果即可\n
- 請寫300字到500字之間,若合適,可以進行分類、列點
資料:{stockname}{analysis}
請特別注意,分析結果包含籌碼面、基本面以及技術面,請針對這三個面向進行回答,並且特別注意個別符合幾項和不符合幾項。籌碼面、技術面和基本面滿分十分,總計滿分為30分。
三個面向中,符合5項以上代表該面項表現好,反之是該面項表現差。
"""
prompt = generate_prompt(text)
start = time.time()
sequences = pipeline(
prompt,
do_sample=True,
top_k=40,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=200,
)
end = time.time()
for seq in sequences:
st.write(f"Result: {seq}") #seq['generated_text']
st.write(f"time: {(end-start):.2f}")
writer.writerow([stockname,text,sequences,f"time: {(end-start):.2f}"])
# input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda')
# with torch.no_grad():
# output_ids = model.generate(
# input_ids=input_ids,
# max_new_tokens=2048,
# top_k=40,
# ).cuda()
# output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
else:
prompt = generate_prompt(user_input)
start = time.time()
sequences = pipeline(
prompt,
do_sample=True,
top_k=40,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=200,
)
end = time.time()
for seq in sequences:
st.write(f"Result: {seq}") #seq['generated_text']
st.write(f"time: {(end-start):.2f}")
writer.writerow(["無",user_input,sequences,f"time: {(end-start):.2f}"])