File size: 11,537 Bytes
ebc546a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
from typing import NamedTuple
from argparse import ArgumentParser
from tqdm import tqdm
import logging
import numpy as np
import torch as T
from torch.nn import functional as F
import diac_utils as du
_x = [
'a'
]
# logging.setLevel(logging.INFO)
logger = logging.getLogger(__file__)
logger.setLevel(logging.INFO)
def logln(*texts: str):
# logger.info(' '.join(texts))
print(*texts)
# Relative improvement:
# T.mean((pred_c.argmax('c') == gt) - (pred_m.argmax('c') == gt))
# Coverage Confidence:
# pred_c.argmax('c')[pred_c.argmax('c') != pred_m.argmax('c')].mean()
class PartialDiacMetrics(NamedTuple):
diff_total: float
worse_total: float
diff_relative: float
der_total: float
selectivity: float
hidden_der: float
partial_der: float
reader_error: float
def load_data(path: str):
if path.endswith('.txt'):
with open(path, 'r', encoding='utf-8') as fin:
return fin.readlines()
else:
return T.load(path)
def parse_data(
data,
logits: bool = False,
side=None,
):
if logits:
ld = data['line_data']
diac_logits = T.tensor(ld[f'diac_logits_{side}'])
# diac_pred: T.Tensor = ld['diac_pred']
diac_pred: T.Tensor = diac_logits.argmax(dim=-1)
diac_gt : T.Tensor = ld['diac_gt']
# diac_logits = (ld['diac_logits_ctxt'], ld['diac_logits_base'])
return diac_pred, diac_gt, diac_logits
if isinstance(data, dict):
ld = data.get('line_data_fix', data['line_data'])
if side is None:
diac_pred: T.Tensor = ld['diac_pred']
else:
diac_pred: T.Tensor = ld[f'diac_logits_{side}'].argmax(axis=-1)
diac_gt : T.Tensor = ld['diac_gt']
return diac_pred, diac_gt
elif isinstance(data, list):
data_indices = [
du.diac_ids_of_line(du.strip_tatweel(du.normalize_spaces(line)))
for line in data
]
max_len = max(map(len, data_indices))
out = np.full((len(data), max_len), fill_value=du.DIAC_PAD_IDX)
for i_line, line_indices in enumerate(data_indices):
out[i_line][:len(line_indices)] = line_indices
return out, None
elif isinstance(data, (T.Tensor, np.ndarray)):
return data, None
else:
raise NotImplementedError
def make_mask_hard(
pred_c: T.Tensor,
pred_m: T.Tensor,
):
selection = (pred_c != pred_m)
return selection
def make_mask_logits(
pred_c: T.Tensor,
pred_m: T.Tensor,
threshold: float = 0.1,
version: str = '2',
) -> T.BoolTensor:
logger.warning(f"{version=}, {threshold=}")
pred_c = T.softmax(T.tensor(pred_c), dim=-1)
pred_m = T.softmax(T.tensor(pred_m), dim=-1)
# pred_i = pred_c.argmax(dim=-1)
if version == 'hard':
selection = pred_c.argmax(-1) != pred_m.argmax(-1)
elif version == '0':
selection = pred_c.max(dim=-1).values > pred_m.max(dim=-1).values
selection = selection & (pred_m.max(dim=-1).values > threshold)
elif version == '1':
pred_c_conf = pred_c.max(dim=-1).values
pred_m_conf = pred_m.max(dim=-1).values
selection = (pred_c_conf - pred_m_conf) > threshold
elif version == '1.1':
pred_c_conf = pred_c.max(dim=-1).values
pred_m_conf = pred_m.max(dim=-1).values
selection = (pred_c_conf - pred_m_conf).abs() > threshold
elif version.startswith('2'):
if version == '2':
max_c = pred_c.argmax(dim=-1, keepdims=True)
selection = T.gather(pred_c - pred_m, dim=-1, index=max_c) > threshold
elif version == '2.1':
max_c = pred_m.argmax(dim=-1, keepdims=True)
selection = T.gather(pred_c - pred_m, dim=-1, index=max_c) > threshold
elif version == '2.abs':
max_c = pred_c.argmax(dim=-1, keepdims=True)
selection = T.gather(pred_c - pred_m, dim=-1, index=max_c).abs() > threshold
elif version == '2.1.abs':
max_c = pred_m.argmax(dim=-1, keepdims=True)
selection = T.gather(pred_c - pred_m, dim=-1, index=max_c).abs() > threshold
elif version == '3':
selection = (pred_c - pred_m).max(dim=-1).values > threshold
elif version == '4':
selection_hard = (pred_c.argmax(-1) != pred_m.argmax(-1))
# selection_logits = (pred_c.max(-1).values - pred_m.max(-1).values) > threshold
selection_logits = T.gather(pred_c - pred_m, dim=-1, index=pred_c.argmax(-1, keepdims=True)) > threshold
selection = selection_hard & selection_logits.squeeze()
# selection = (pred_c != pred_m)
return selection.squeeze()
def analysis_summary(
pred_c : T.LongTensor,
pred_m : T.LongTensor,
labels : T.LongTensor,
padding_mask: T.BoolTensor,
*,
selection : T.Tensor = None,
random: bool = False,
logits: tuple = None
):
#^ pred_c: [b tw tc | ClassId]
#^ pred_m: [b tw tc | ClassId]
#^ labels: [b tw tc | ClassId]
padding_mask = T.tensor(padding_mask)
# padding_mask[:, 200:] = False
nonpad_mask = ~padding_mask
num_chars = nonpad_mask.sum()
if logits is not None:
logits = tuple(map(T.tensor, logits))
# pred_c = (logits[0] + logits[1]).argmax(-1)
pred_c = (T.softmax(logits[0], dim=-1) + T.softmax(logits[1], dim=-1)).argmax(-1)
pred_c = T.tensor(pred_c)[nonpad_mask]
pred_m = T.tensor(pred_m)[nonpad_mask]
labels = T.tensor(labels)[nonpad_mask]
#^ : [(b * tw * tc) | ClassId]
ctxt_match = (pred_c == labels).float()
base_match = (pred_m == labels).float()
selection = T.tensor(selection)[nonpad_mask]
if random:
selection = pred_c.new_empty(pred_c.shape).bernoulli_(p=selection.float().mean()).to(bool)
unselected = ~selection
assert num_chars > 0
assert selection.sum() > 0
base_accuracy = base_match[unselected].sum() / unselected.sum()
ctxt_accuracy = ctxt_match[selection].sum() / selection.sum()
correct_total = ctxt_match.sum() / num_chars
der_total = 1 - correct_total
cmp = (ctxt_match - base_match)[selection]
diff = T.sum(cmp)
diff_total = diff / num_chars
diff_relative = diff / selection.sum()
selectivity = selection.sum() / num_chars
worse_total = base_match[selection].sum() / num_chars
hidden_der = 1.0 - base_accuracy
partial_der = 1.0 - ctxt_accuracy
reader_error = selectivity * partial_der + (1 - selectivity) * hidden_der
return PartialDiacMetrics(
diff_total = round(diff_total.item() * 100, 2),
worse_total = round(worse_total.item() * 100, 2),
diff_relative = round(diff_relative.item() * 100, 2),
der_total = round(der_total.item() * 100, 2),
selectivity = round(selectivity.item() * 100, 2),
hidden_der = round(hidden_der.item() * 100, 2),
partial_der = round(partial_der.item() * 100, 2),
reader_error = round(reader_error.item() * 100, 2)
)
def relative_improvement_soft(
pred_c : T.Tensor,
pred_m : T.Tensor,
labels : T.LongTensor,
padding_mask: T.Tensor,
):
#^ pred_c: [b tw tc Classes="15"]
#^ pred_m: [b tw tc Classes="15"]
padding_mask = T.tensor(padding_mask)
nonpad_mask = 1 - padding_mask.float()
num_chars = nonpad_mask.sum()
pred_c = T.tensor(pred_c)[~padding_mask]
pred_m = T.tensor(pred_m)[~padding_mask]
#^ : [(b * tw * tc), Classes]
labels = T.tensor(labels)[~padding_mask]
#^ : [(b * tw * tc) | ClassId]
ctxt_match = T.gather(pred_c, dim=1, index=labels)
base_match = T.gather(pred_m, dim=1, index=labels)
selection = (pred_c.argmax(-1) != pred_m.argmax(-1))
better = T.sum(ctxt_match - base_match) / num_chars
selectivity = selection.sum() / num_chars
worse = base_match[selection].sum() / num_chars
return better, worse, selectivity
def relative_improvement_masked_soft(
pred_c: T.Tensor,
pred_m: T.Tensor,
ground_truth: T.LongTensor,
padding_mask: T.Tensor,
):
raise NotImplementedError
#^ pred_c: [b tw tc "13"]
#^ pred_m: [b tw tc "13"]
#^ ground_truth: [b tw tc ClassId]
nonpad_mask = 1 - padding_mask
selection_mask = pred_c.argmax(3) != pred_m.argmax(3)
#^ selection_mask: [b tw tc]
probs = F.softmax(pred_c.clone(), dim=-1)
probs_gt = T.gather(probs, dim=-1, index=ground_truth.unsqueeze(-1)).squeeze(-1)
#^ probs_gt: [b tw tc]
result = probs_gt[selection_mask & nonpad_mask].mean()
return result
def coverage_confidence(
pred_c: T.Tensor,
pred_m: T.Tensor,
padding_mask: T.Tensor,
# selection_mask: T.Tensor,
):
raise NotImplementedError
#^ pred_c: [b tw tc "13"]
#^ pred_m: [b tw tc "13"]
#^ selection_mask: [b tw tc (bool)]
pred_c_id = pred_c.argmax(3)
pred_m_id = pred_m.argmax(3)
selected = pred_c_id[pred_c_id != pred_m_id]
nonpad_mask = 1 - padding_mask
result = selected.sum() / nonpad_mask.sum()
return result
def cli():
parser = ArgumentParser('Compare diacritics from base/ctxt systems with partial diac metrics.')
parser.add_argument('-m', '--model-output-base', help="Path to tensor.pt dump files of base diacs.")
parser.add_argument('-c', '--model-output-ctxt', help="Path to tensor.pt dump files of ctxt diacs.")
parser.add_argument('--gt', default=None, help="Path to tensor.pt for gt only.")
parser.add_argument('--mode', choices=['hard', 'logits'], default='hard')
args = parser.parse_args()
model_output_base = parse_data(
load_data(args.model_output_base),
# logits=args.mode == 'logits',
logits=True,
side='base',
)
model_output_ctxt = parse_data(
load_data(args.model_output_ctxt),
# logits=args.mode == 'logits',
logits=True,
side='ctxt',
)
#^ shape: [b, tc] -> ClassId
diacs_pred = model_output_base
logln(f"{model_output_base[0].shape=} , {model_output_ctxt[0].shape=}")
assert len(model_output_base[0]) == len(model_output_ctxt[0])
# for diacs_base, diacs_ctxt in zip(
# tqdm(model_output_base, dynamic_cols=True),
# model_output_ctxt
# ):
# diacs = np.where(diacs_base != diacs_ctxt, diacs_ctxt, 0)[diacs_ctxt != -1] #< Ignore padding
xc = model_output_ctxt
xm = model_output_base
# if args.mode == 'logits':
# elif args.mode == 'hard':
# xc = model_output_ctxt
# xm = model_output_base
# if args.gt is not None:
# ground_truth = parse_data(load_data(args.gt))[1]
if xm[1] is not None:
ground_truth = xm[1]
elif xc[1] is not None:
ground_truth = xc[1]
assert ground_truth is not None
if args.mode == 'hard':
selection = make_mask_hard(xc[0], xm[0])
elif args.mode == 'logits':
selection = make_mask_logits(xc[2], xm[2])
metrics = analysis_summary(
xc[0], xm[0], ground_truth, ground_truth == -1,
selection=selection,
logits=(xc[2], xm[2])
)
logln("Actual Totals:", metrics)
metrics = analysis_summary(
xc[0], xm[0], ground_truth, ground_truth == -1, random=True,
selection=selection,
logits=(xc[2], xm[2])
)
logln("Random Marked Chars:", metrics)
|