import gradio as gr from huggingface_hub import InferenceClient # Define a dictionary of pre-defined LLMs # To add a new LLM: # 1. Go to https://huggingface.co/models # 2. Find an open-source LLM that supports the chat completion task # 3. Copy the model's name (e.g., "mistralai/Mistral-7B-Instruct-v0.1") # 4. Add it to this dictionary with a user-friendly name as the key MODELS = { "Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta", "Mistral 7B Instruct": "mistralai/Mistral-7B-Instruct-v0.1", "Llama 2 7B": "meta-llama/Llama-2-7b-chat-hf", "FLAN-T5 XXL": "google/flan-t5-xxl", # Add more models here as needed } def respond( message, history: list[tuple[str, str]], model_name, system_message, max_tokens, temperature, top_p, ): client = InferenceClient(MODELS[model_name]) messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" try: for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response except Exception as e: yield f"Error: {str(e)}" demo = gr.ChatInterface( respond, additional_inputs=[ gr.Dropdown(choices=list(MODELS.keys()), label="Select LLM", value=list(MODELS.keys())[0]), gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ), ], ) if __name__ == "__main__": demo.launch(share=True)