File size: 8,339 Bytes
5b4b058 fa923dd 5b4b058 fa923dd 5b4b058 fa923dd 5b4b058 d384d1c 5b4b058 d384d1c 5b4b058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import gradio as gr
import torch
import os
import io
from gtts import gTTS
import soundfile as sf
import tempfile
import logging
# Import your existing functionality
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
from transformers import Wav2Vec2ForCTC, AutoProcessor
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Update the model loading section
try:
# Try to load custom model
checkpoint_dir = "bishaltwr/final_m2m100"
logging.info(f"Attempting to load custom M2M100 from {checkpoint_dir}")
tokenizer = M2M100Tokenizer.from_pretrained(checkpoint_dir)
model_m2m = M2M100ForConditionalGeneration.from_pretrained(checkpoint_dir)
logging.info("Custom M2M100 model loaded successfully")
except Exception as e:
logging.error(f"Error loading custom M2M100 model: {e}")
try:
# Fall back to official model
checkpoint_dir = "facebook/m2m100_418M"
logging.info(f"Attempting to load official M2M100 from {checkpoint_dir}")
tokenizer = M2M100Tokenizer.from_pretrained(checkpoint_dir)
model_m2m = M2M100ForConditionalGeneration.from_pretrained(checkpoint_dir)
logging.info("Official M2M100 model loaded successfully")
m2m_available = True
except Exception as e2:
logging.error(f"Error loading official M2M100 model: {e2}")
m2m_available = False
logging.info("Setting m2m_available to False")
# Set device after model loading
if m2m_available:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info(f"Using device: {device}")
model_m2m.to(device)
# Initialize ASR model
model_id = "bishaltwr/wav2vec2-large-mms-1b-nepali"
try:
processor = AutoProcessor.from_pretrained(model_id)
model_asr = Wav2Vec2ForCTC.from_pretrained(model_id, ignore_mismatched_sizes=True)
asr_available = True
except Exception as e:
logging.error(f"Error loading ASR model: {e}")
asr_available = False
# Initialize X-Transformer model
try:
from inference import translate as xtranslate
xtransformer_available = True
except Exception as e:
logging.error(f"Error loading XTransformer model: {e}")
xtransformer_available = False
def m2m_translate(text, source_lang, target_lang):
"""Translation using M2M100 model"""
if not m2m_available:
return "M2M100 model not available"
tokenizer.src_lang = source_lang
inputs = tokenizer(text, return_tensors="pt").to(device)
translated_tokens = model_m2m.generate(
**inputs,
forced_bos_token_id=tokenizer.get_lang_id(target_lang)
)
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
return translated_text
def transcribe_audio(audio_path, language="npi"):
"""Transcribe audio using ASR model"""
if not asr_available:
return "ASR model not available"
import librosa
audio, sr = librosa.load(audio_path, sr=16000)
processor.tokenizer.set_target_lang(language)
model_asr.load_adapter(language)
inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
with torch.no_grad():
outputs = model_asr(**inputs).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids, skip_special_tokens=True)
if language == "eng":
transcription = transcription.replace('<pad>','').replace('<unk>','')
else:
transcription = transcription.replace('<pad>',' ').replace('<unk>','')
return transcription
def text_to_speech(text):
"""Convert text to speech using gTTS"""
if not text:
return None
try:
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
tts = gTTS(text=text)
tts.save(temp_audio.name)
return temp_audio.name
except Exception as e:
logging.error(f"TTS error: {e}")
return None
def detect_language(text):
"""Simple language detection function"""
english_chars = sum(1 for c in text if c.isascii() and c.isalpha())
return "en" if english_chars > len(text) * 0.5 else "ne"
def translate_text(text, model_choice, source_lang=None, target_lang=None):
"""Main translation function"""
if not text:
return "Please enter some text to translate"
# Auto-detect language if not specified
if not source_lang:
source_lang = detect_language(text)
target_lang = "ne" if source_lang == "en" else "en"
# Choose the translation model
if model_choice == "XTransformer" and xtransformer_available:
return xtranslate(text)
elif model_choice == "M2M100" and m2m_available:
return m2m_translate(text, source_lang=source_lang, target_lang=target_lang)
else:
return "Selected model is not available"
# Set up the Gradio interface
with gr.Blocks(title="Nepali-English Translator") as demo:
gr.Markdown("# Nepali-English Translation Service")
gr.Markdown("Translate between Nepali and English, transcribe audio, and convert text to speech.")
# Set up tabs for different functions
with gr.Tabs():
# Text Translation Tab
with gr.TabItem("Text Translation"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label="Input Text", lines=5)
with gr.Row():
model_choice = gr.Radio(
choices=["XTransformer", "M2M100"],
value="XTransformer",
label="Translation Model"
)
with gr.Row():
source_lang = gr.Dropdown(
choices=["Auto-detect", "en", "ne"],
value="Auto-detect",
label="Source Language",
visible=True
)
target_lang = gr.Dropdown(
choices=["Auto-select", "en", "ne"],
value="Auto-select",
label="Target Language",
visible=True
)
translate_button = gr.Button("Translate")
with gr.Column():
translation_output = gr.Textbox(label="Translation Output", lines=5)
tts_button = gr.Button("Convert to Speech")
audio_output = gr.Audio(label="Audio Output")
# Speech to Text Tab
with gr.TabItem("Speech to Text"):
with gr.Column():
audio_input = gr.Audio(label="Upload or Record Audio", type="filepath")
asr_language = gr.Radio(
choices=["eng", "npi"],
value="npi",
label="Speech Language"
)
transcribe_button = gr.Button("Transcribe")
transcription_output = gr.Textbox(label="Transcription Output", lines=3)
# Define event handlers
def process_translation(text, model, src_lang, tgt_lang):
if src_lang == "Auto-detect":
src_lang = None
if tgt_lang == "Auto-select":
tgt_lang = None
return translate_text(text, model, src_lang, tgt_lang)
def process_tts(text):
return text_to_speech(text)
def process_transcription(audio_path, language):
if not audio_path:
return "Please upload or record audio"
return transcribe_audio(audio_path, language)
# Connect the components
translate_button.click(
process_translation,
inputs=[text_input, model_choice, source_lang, target_lang],
outputs=translation_output
)
tts_button.click(
process_tts,
inputs=translation_output,
outputs=audio_output
)
transcribe_button.click(
process_transcription,
inputs=[audio_input, asr_language],
outputs=transcription_output
)
# Launch the app
if __name__ == "__main__":
demo.launch() |