File size: 9,325 Bytes
832a5e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
from typing import NamedTuple, List, Callable, List, Tuple, Optional
import torch
from torch import nn
import torch.nn.functional as F

class LinData(NamedTuple):
    in_dim : int # input dimension
    hidden_layers : List[int] # hidden layers including the output layer
    activations : List[Optional[Callable[[torch.Tensor],torch.Tensor]]] # list of activations
    bns : List[bool] # list of bools
    dropouts : List[Optional[float]] # list of dropouts probas
        
class CNNData(NamedTuple):
    in_dim : int # input dimension
    n_f : List[int] # num filters
    kernel_size : List[Tuple] # kernel size [(5,5,5), (3,3,3),(3,3,3)]
    activations : List[Optional[Callable[[torch.Tensor],torch.Tensor]]] # activation list
    bns : List[bool] # batch normialization [True, True, False]
    dropouts : List[Optional[float]] # # list of dropouts probas [.5,0,0]
    #dropouts_ps : list # [0.5,.7, 0]
    paddings : List[Optional[Tuple]] #[(0,0,0),(0,0,0), (0,0,0)]
    strides : List[Optional[Tuple]] #[(1,1,1),(1,1,1),(1,1,1)]
    
    
class NetData(NamedTuple):
    cnn3d : CNNData
    lin : LinData
    




class CNN3D_Mike(nn.Module):
    def __init__(self, t_dim=30, img_x=256 , img_y=342, drop_p=0, fc_hidden1=256, fc_hidden2=256):
        super(CNN3D_Mike, self).__init__()        # set video dimension
        self.t_dim = t_dim
        self.img_x = img_x
        self.img_y = img_y
        # fully connected layer hidden nodes
        self.fc_hidden1, self.fc_hidden2 = fc_hidden1, fc_hidden2
        self.drop_p = drop_p
        #self.num_classes = num_classes
        self.ch1, self.ch2 = 32, 48
        self.k1, self.k2 = (5, 5, 5), (3, 3, 3)  # 3d kernel size
        self.s1, self.s2 = (2, 2, 2), (2, 2, 2)  # 3d strides
        self.pd1, self.pd2 = (0, 0, 0), (0, 0, 0)  # 3d padding        # compute conv1 & conv2 output shape
        self.conv1_outshape = conv3D_output_size((self.t_dim, self.img_x, self.img_y), self.pd1, self.k1, self.s1)
        self.conv2_outshape = conv3D_output_size(self.conv1_outshape, self.pd2, self.k2, self.s2)        
        self.conv1 = nn.Conv3d(in_channels=1, out_channels=self.ch1, kernel_size=self.k1, stride=self.s1,
                               padding=self.pd1)
        self.bn1 = nn.BatchNorm3d(self.ch1)
        self.conv2 = nn.Conv3d(in_channels=self.ch1, out_channels=self.ch2, kernel_size=self.k2, stride=self.s2,
                               padding=self.pd2)
        self.bn2 = nn.BatchNorm3d(self.ch2)
        self.relu = nn.ReLU(inplace=True)
        self.drop = nn.Dropout3d(self.drop_p)
        self.pool = nn.MaxPool3d(2)
        self.fc1 = nn.Linear(self.ch2*self.conv2_outshape[0]*self.conv2_outshape[1]*self.conv2_outshape[2],
                             self.fc_hidden1)  # fully connected hidden layer
        self.fc2 = nn.Linear(self.fc_hidden1, self.fc_hidden2)
        self.fc3 = nn.Linear(self.fc_hidden2,1)  # fully connected layer, output = multi-classes 
        
        
    def forward(self, x_3d):
        # Conv 1
        x = self.conv1(x_3d)
       
        x = self.bn1(x)
        x = self.relu(x)
        x = self.drop(x)
        # Conv 2
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)
        x = self.drop(x)
        # FC 1 and 2
        x = x.view(x.size(0), -1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        
        #x = F.relu(self.fc3(x))
        #x = F.relu(self.fc3(x))
        x = F.dropout(x, p=self.drop_p, training=self.training)
        #x = self.fc3(x)
        #x = F.softmax(self.fc2(x))
        
        x = self.fc3(x) 
        
        
        
        return x

    

class CNNLayers(nn.Module):

    def __init__(self, args):
    
        super(CNNLayers, self).__init__()
        
        self.in_dim = args.in_dim# 1/3
        self.n_f = args.n_f#[32,64]
        self.kernel_size = args.kernel_size # [(5,5,5), (3,3,3)]
        self.activations = args.activations#['relu', 'relu']
        self.bns = args.bns #[True, True], 
        self.dropouts = args.dropouts #[True, True]
        #self.dropouts_ps = args.dropouts_ps#[0.5,.7]
        self.paddings = args.paddings #[(0,0,0),(0,0,0)]
        self.strides = args.strides # strides [(1,1,1),(1,1,1),(1,1,1)])
        #self.poolings = args.poolings
        
        assert len(self.n_f) == len(self.activations) == len(self.bns) == len(self.dropouts), 'dimensions mismatch : check dimensions!'
        
        # generate layers seq of seq 
        self._get_layers()
       
    def _get_layers(self):
        
        layers =nn.ModuleList()
        in_channels = self.in_dim
        
        for idx, chans in enumerate(self.n_f):
            sub_layers = nn.ModuleList()                            
                                        
            sub_layers.append(nn.Conv3d(in_channels = in_channels,
                                        out_channels = chans, #self.n_f[idx],
                                        kernel_size = self.kernel_size[idx],
                                        stride = self.strides[idx],
                                        padding = self.paddings[idx]
                                        ))
                                        


            if self.bns[idx] : sub_layers.append(nn.BatchNorm3d(num_features = self.n_f[idx]))

            #if self.dropouts[idx] : sub_layers.append(nn.Dropout3d(p = self.dropouts_ps[idx]))
            
            if self.dropouts[idx] : sub_layers.append(nn.Dropout3d(p = self.dropouts[idx]))

            #if self.activations[idx]  : sub_layers.append(self.__class__.get_activation(self.activations[idx]))
            
            if self.activations[idx]  : sub_layers.append(self.activations[idx])
            
            sub_layers = nn.Sequential(*sub_layers) 
            
            layers.append(sub_layers)
            
            in_channels = self.n_f[idx]
    
        self.layers = nn.Sequential(*layers)
        
        
    @staticmethod
    def get_activation(activation):
        if activation == 'relu':
            activation=nn.ReLU()
        elif activation == 'leakyrelu':
            activation=nn.LeakyReLU(negative_slope=0.1)
        elif activation == 'selu':
            activation=nn.SELU()
        
        return activation
        
        
        
    def forward(self, x):
        
        x = self.layers(x)
        
        return x 
        
        

class CNN3D(nn.Module):

    def __init__(self, args):
        super(CNN3D,self).__init__()
        # check datatype
        if not isinstance(args, NetData):
            raise TypeError("input must be a ParserClass")
            
        self.cnn3d = CNNLayers(args.cnn3d)

        self.lin = LinLayers(args.lin)
        
        self.in_dim = args.lin.in_dim
        
        
    def forward(self, x):
        
        # cnn 3d
        x = self.cnn3d(x)
        
        x = x.view(-1, self.in_dim)
        
        # feedforward
        x = self.lin(x)
        
        return x
        
        
     

class LinLayers(nn.Module):
    
    def __init__(self, args):
        super(LinLayers,self).__init__()
        
        in_dim= args.in_dim #16,
        hidden_layers= args.hidden_layers #[512,256,128,2],
        activations=args.activations#[nn.LeakyReLU(0.2),nn.LeakyReLU(0.2),nn.LeakyReLU(0.2)],
        batchnorms=args.bns#[True,True,True],
        dropouts = args.dropouts#[None, 0.2, 0.2]
                
        
        assert len(hidden_layers) == len(activations) == len(batchnorms) == len(dropouts), 'dimensions mismatch!'
       
        
        layers=nn.ModuleList()
        
        if hidden_layers:
            old_dim=in_dim
            for idx,layer in enumerate(hidden_layers):
                sub_layers = nn.ModuleList()
                sub_layers.append(nn.Linear(old_dim,layer))
                if batchnorms[idx] : sub_layers.append(nn.BatchNorm1d(num_features=layer))
                if activations[idx] : sub_layers.append(activations[idx])
                if dropouts[idx] : sub_layers.append(nn.Dropout(p=dropouts[idx]))
                old_dim = layer
                
                sub_layers = nn.Sequential(*sub_layers) 
            
                layers.append(sub_layers)
            
        
            
        else:# for single layer
            layers.append(nn.Linear(in_dim,out_dim)) 
            if batchnorms : layers.append(nn.BatchNorm1d(num_features=out_dim))
            if activations : layers.append(activations)
            if dropouts : layers.append(nn.Dropout(p=dropouts))
        
        self.layers = nn.Sequential(*layers)
            
    
        
    def forward(self,x):
    
        x = self.layers(x)
        
        return x
        
    '''

    def _check_dimensions(self):

        if isinstance(self.hidden_layers,list) : 

            assert len(self.hidden_layers)==len(self.activations)

            assert len(self.hidden_layers)==len(self.batchnorms)

            assert len(self.hidden_layers)==len(self.dropouts)

    '''