Spaces:
Runtime error
Runtime error
add pickle prep script and hot fix app to not load dna
Browse files- app.py +4 -2
- prepare_pickle.py +205 -0
app.py
CHANGED
@@ -7,6 +7,7 @@ from PIL import Image
|
|
7 |
import io
|
8 |
import pickle
|
9 |
import random
|
|
|
10 |
|
11 |
|
12 |
def getRandID():
|
@@ -106,8 +107,9 @@ with gr.Blocks() as demo:
|
|
106 |
# initialize both possible dicts
|
107 |
with open("big_id_to_image_emb_dict.pickle", "rb") as f:
|
108 |
id_to_image_emb_dict = pickle.load(f)
|
109 |
-
with open("big_id_to_dna_emb_dict.pickle", "rb") as f:
|
110 |
-
|
|
|
111 |
|
112 |
with gr.Column():
|
113 |
with gr.Row():
|
|
|
7 |
import io
|
8 |
import pickle
|
9 |
import random
|
10 |
+
import click
|
11 |
|
12 |
|
13 |
def getRandID():
|
|
|
107 |
# initialize both possible dicts
|
108 |
with open("big_id_to_image_emb_dict.pickle", "rb") as f:
|
109 |
id_to_image_emb_dict = pickle.load(f)
|
110 |
+
# with open("big_id_to_dna_emb_dict.pickle", "rb") as f:
|
111 |
+
# id_to_dna_emb_dict = pickle.load(f)
|
112 |
+
id_to_dna_emb_dict = None
|
113 |
|
114 |
with gr.Column():
|
115 |
with gr.Row():
|
prepare_pickle.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import h5py
|
6 |
+
import faiss
|
7 |
+
import click
|
8 |
+
|
9 |
+
|
10 |
+
def getFlatIP():
|
11 |
+
test_index = faiss.IndexFlatIP(768)
|
12 |
+
return test_index
|
13 |
+
|
14 |
+
|
15 |
+
def getFlatL2():
|
16 |
+
test_index = faiss.IndexFlatL2(768)
|
17 |
+
return test_index
|
18 |
+
|
19 |
+
|
20 |
+
def getIVFFlat(all_keys, seen_test, unseen_test, seen_val, unseen_val):
|
21 |
+
quantizer = faiss.IndexFlatIP(768)
|
22 |
+
test_index = faiss.IndexIVFFlat(quantizer, 768, 128)
|
23 |
+
test_index.train(all_keys)
|
24 |
+
test_index.train(seen_test)
|
25 |
+
test_index.train(unseen_test)
|
26 |
+
test_index.train(seen_val)
|
27 |
+
test_index.train(unseen_val)
|
28 |
+
return test_index
|
29 |
+
|
30 |
+
|
31 |
+
def getHNSW():
|
32 |
+
# 16: connections for each vertex. efSearch: depth of search during search. efConstruction: depth of search during build
|
33 |
+
test_index = faiss.IndexHNSWFlat(768, 16)
|
34 |
+
test_index.hnsw.efSearch = 32
|
35 |
+
test_index.hnsw.efConstruction = 64
|
36 |
+
return test_index
|
37 |
+
|
38 |
+
|
39 |
+
def getLSH():
|
40 |
+
test_index = faiss.IndexLSH(768, 768 * 2)
|
41 |
+
return test_index
|
42 |
+
|
43 |
+
|
44 |
+
def getIdToEmbedding(allid, stid, utid, svalid, uvalid, all_keys, seen_test, unseen_test, seen_val, unseen_val):
|
45 |
+
id_to_emb_dict = dict()
|
46 |
+
i = 0
|
47 |
+
for id in allid:
|
48 |
+
id_to_emb_dict[id] = np.array([all_keys[i]])
|
49 |
+
i += 1
|
50 |
+
for id in stid:
|
51 |
+
id_to_emb_dict[id] = np.array([seen_test[i]])
|
52 |
+
i += 1
|
53 |
+
for id in utid:
|
54 |
+
id_to_emb_dict[id] = np.array([unseen_test[i]])
|
55 |
+
i += 1
|
56 |
+
for id in svalid:
|
57 |
+
id_to_emb_dict[id] = np.array([seen_val[i]])
|
58 |
+
i += 1
|
59 |
+
for id in uvalid:
|
60 |
+
id_to_emb_dict[id] = np.array([unseen_val[i]])
|
61 |
+
i += 1
|
62 |
+
|
63 |
+
return id_to_emb_dict
|
64 |
+
|
65 |
+
|
66 |
+
@click.command()
|
67 |
+
@click.option(
|
68 |
+
"--input",
|
69 |
+
type=click.Path(path_type=Path),
|
70 |
+
default="bioscan-clip-scripts/extracted_features",
|
71 |
+
help="Path to extracted features",
|
72 |
+
)
|
73 |
+
@click.option(
|
74 |
+
"--metadata", type=click.Path(path_type=Path), default="data/BIOSCAN_5M/BIOSCAN_5M.hdf5", help="Path to metadata"
|
75 |
+
)
|
76 |
+
@click.option(
|
77 |
+
"--output", type=click.Path(path_type=Path), default="bioscan-clip-scripts/index", help="Path to save the index"
|
78 |
+
)
|
79 |
+
def main(input, metadata, output):
|
80 |
+
# initialize data
|
81 |
+
all_keys = h5py.File(input / "extracted_features_of_all_keys.hdf5", "r", libver="latest")
|
82 |
+
all_keys_dna = all_keys["encoded_dna_feature"][:]
|
83 |
+
all_keys_im = all_keys["encoded_image_feature"][:]
|
84 |
+
|
85 |
+
seen_test = h5py.File(input / "extracted_features_of_seen_test.hdf5", "r", libver="latest")
|
86 |
+
seen_test_dna = seen_test["encoded_dna_feature"][:]
|
87 |
+
seen_test_im = seen_test["encoded_image_feature"][:]
|
88 |
+
|
89 |
+
unseen_test = h5py.File(input / "extracted_features_of_unseen_test.hdf5", "r", libver="latest")
|
90 |
+
unseen_test_dna = unseen_test["encoded_dna_feature"][:]
|
91 |
+
unseen_test_im = unseen_test["encoded_image_feature"][:]
|
92 |
+
|
93 |
+
seen_val = h5py.File(input / "extracted_features_of_seen_val.hdf5", "r", libver="latest")
|
94 |
+
seen_val_dna = seen_val["encoded_dna_feature"][:]
|
95 |
+
seen_val_im = seen_val["encoded_image_feature"][:]
|
96 |
+
|
97 |
+
unseen_val = h5py.File(input / "extracted_features_of_unseen_val.hdf5", "r", libver="latest")
|
98 |
+
unseen_val_dna = unseen_val["encoded_dna_feature"][:]
|
99 |
+
unseen_val_im = unseen_val["encoded_image_feature"][:]
|
100 |
+
|
101 |
+
dataset = h5py.File(metadata, "r", libver="latest")
|
102 |
+
id_field = "sampleid" # "processid"
|
103 |
+
allid = [item.decode("utf-8") for item in dataset["all_keys"][id_field][:]]
|
104 |
+
stid = [item.decode("utf-8") for item in dataset["test_seen"][id_field][:]]
|
105 |
+
utid = [item.decode("utf-8") for item in dataset["test_unseen"][id_field][:]]
|
106 |
+
svalid = [item.decode("utf-8") for item in dataset["val_seen"][id_field][:]]
|
107 |
+
uvalid = [item.decode("utf-8") for item in dataset["val_unseen"][id_field][:]]
|
108 |
+
|
109 |
+
all_keys = dataset["all_keys"]
|
110 |
+
seen_test = dataset["test_seen"]
|
111 |
+
unseen_test = dataset["test_unseen"]
|
112 |
+
seen_val = dataset["val_seen"]
|
113 |
+
unseen_val = dataset["val_unseen"]
|
114 |
+
|
115 |
+
# d = getIdToEmbedding(allid, stid, utid, svalid, uvalid, all_keys_dna, seen_test_dna, unseen_test_dna, seen_val_dna, unseen_val_dna)
|
116 |
+
# d = getIdToEmbedding(allid, stid, utid, svalid, uvalid, all_keys_im, seen_test_im, unseen_test_im, seen_val_im, unseen_val_im)
|
117 |
+
|
118 |
+
big_id_to_image_emb_dict = dict()
|
119 |
+
i = 0
|
120 |
+
for object in allid:
|
121 |
+
big_id_to_image_emb_dict[object] = np.array([all_keys_im[i]])
|
122 |
+
i += 1
|
123 |
+
i = 0
|
124 |
+
for object in stid:
|
125 |
+
big_id_to_image_emb_dict[object] = np.array([seen_test_im[i]])
|
126 |
+
i += 1
|
127 |
+
i = 0
|
128 |
+
for object in utid:
|
129 |
+
big_id_to_image_emb_dict[object] = np.array([unseen_test_im[i]])
|
130 |
+
i += 1
|
131 |
+
i = 0
|
132 |
+
for object in svalid:
|
133 |
+
big_id_to_image_emb_dict[object] = np.array([seen_val_im[i]])
|
134 |
+
i += 1
|
135 |
+
i = 0
|
136 |
+
for object in uvalid:
|
137 |
+
big_id_to_image_emb_dict[object] = np.array([unseen_val_im[i]])
|
138 |
+
i += 1
|
139 |
+
|
140 |
+
###
|
141 |
+
|
142 |
+
big_id_to_dna_emb_dict = dict()
|
143 |
+
i = 0
|
144 |
+
for object in allid:
|
145 |
+
big_id_to_dna_emb_dict[object] = np.array([all_keys_dna[i]])
|
146 |
+
i += 1
|
147 |
+
i = 0
|
148 |
+
for object in stid:
|
149 |
+
big_id_to_dna_emb_dict[object] = np.array([seen_test_dna[i]])
|
150 |
+
i += 1
|
151 |
+
i = 0
|
152 |
+
for object in utid:
|
153 |
+
big_id_to_dna_emb_dict[object] = np.array([unseen_test_dna[i]])
|
154 |
+
i += 1
|
155 |
+
i = 0
|
156 |
+
for object in svalid:
|
157 |
+
big_id_to_dna_emb_dict[object] = np.array([seen_val_dna[i]])
|
158 |
+
i += 1
|
159 |
+
i = 0
|
160 |
+
for object in uvalid:
|
161 |
+
big_id_to_dna_emb_dict[object] = np.array([unseen_val_dna[i]])
|
162 |
+
i += 1
|
163 |
+
|
164 |
+
###
|
165 |
+
|
166 |
+
processid_to_indx = dict()
|
167 |
+
big_indx_to_id_dict = dict()
|
168 |
+
i = 0
|
169 |
+
for object in allid:
|
170 |
+
big_indx_to_id_dict[i] = object
|
171 |
+
processid_to_indx[object] = i
|
172 |
+
i += 1
|
173 |
+
|
174 |
+
for object in stid:
|
175 |
+
big_indx_to_id_dict[i] = object
|
176 |
+
processid_to_indx[object] = i
|
177 |
+
i += 1
|
178 |
+
|
179 |
+
for object in utid:
|
180 |
+
big_indx_to_id_dict[i] = object
|
181 |
+
processid_to_indx[object] = i
|
182 |
+
i += 1
|
183 |
+
|
184 |
+
for object in svalid:
|
185 |
+
big_indx_to_id_dict[i] = object
|
186 |
+
processid_to_indx[object] = i
|
187 |
+
i += 1
|
188 |
+
|
189 |
+
for object in uvalid:
|
190 |
+
big_indx_to_id_dict[i] = object
|
191 |
+
processid_to_indx[object] = i
|
192 |
+
i += 1
|
193 |
+
|
194 |
+
###
|
195 |
+
|
196 |
+
with open(output / "big_id_to_image_emb_dict.pickle", "wb") as f:
|
197 |
+
pickle.dump(big_id_to_image_emb_dict, f)
|
198 |
+
with open(output / "big_id_to_dna_emb_dict.pickle", "wb") as f:
|
199 |
+
pickle.dump(big_id_to_dna_emb_dict, f)
|
200 |
+
with open(output / "big_indx_to_id_dict.pickle", "wb") as f:
|
201 |
+
pickle.dump(big_indx_to_id_dict, f)
|
202 |
+
|
203 |
+
|
204 |
+
if __name__ == "__main__":
|
205 |
+
main()
|