Spaces:
Runtime error
Runtime error
File size: 119,500 Bytes
c5ff415 81222f4 c5ff415 81222f4 c5ff415 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "H-pmLfmm7lus",
"outputId": "c76797e6-3e80-408f-99d2-c853f3b29ce9"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting gradio\n",
" Downloading gradio-3.35.2-py3-none-any.whl (19.7 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m19.7/19.7 MB\u001b[0m \u001b[31m80.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting aiofiles (from gradio)\n",
" Downloading aiofiles-23.1.0-py3-none-any.whl (14 kB)\n",
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from gradio) (3.8.4)\n",
"Requirement already satisfied: altair>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (4.2.2)\n",
"Collecting fastapi (from gradio)\n",
" Downloading fastapi-0.98.0-py3-none-any.whl (56 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.0/57.0 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting ffmpy (from gradio)\n",
" Downloading ffmpy-0.3.0.tar.gz (4.8 kB)\n",
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"Collecting gradio-client>=0.2.7 (from gradio)\n",
" Downloading gradio_client-0.2.7-py3-none-any.whl (288 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m288.4/288.4 kB\u001b[0m \u001b[31m32.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting httpx (from gradio)\n",
" Downloading httpx-0.24.1-py3-none-any.whl (75 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.4/75.4 kB\u001b[0m \u001b[31m10.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting huggingface-hub>=0.14.0 (from gradio)\n",
" Downloading huggingface_hub-0.15.1-py3-none-any.whl (236 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m236.8/236.8 kB\u001b[0m \u001b[31m31.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.1.2)\n",
"Requirement already satisfied: markdown-it-py[linkify]>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.0.0)\n",
"Requirement already satisfied: markupsafe in /usr/local/lib/python3.10/dist-packages (from gradio) (2.1.3)\n",
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from gradio) (3.7.1)\n",
"Collecting mdit-py-plugins<=0.3.3 (from gradio)\n",
" Downloading mdit_py_plugins-0.3.3-py3-none-any.whl (50 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.5/50.5 kB\u001b[0m \u001b[31m7.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from gradio) (1.22.4)\n",
"Collecting orjson (from gradio)\n",
" Downloading orjson-3.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (136 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m137.0/137.0 kB\u001b[0m \u001b[31m17.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from gradio) (1.5.3)\n",
"Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (from gradio) (8.4.0)\n",
"Requirement already satisfied: pydantic in /usr/local/lib/python3.10/dist-packages (from gradio) (1.10.9)\n",
"Collecting pydub (from gradio)\n",
" Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)\n",
"Requirement already satisfied: pygments>=2.12.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (2.14.0)\n",
"Collecting python-multipart (from gradio)\n",
" Downloading python_multipart-0.0.6-py3-none-any.whl (45 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.7/45.7 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from gradio) (6.0)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from gradio) (2.27.1)\n",
"Collecting semantic-version (from gradio)\n",
" Downloading semantic_version-2.10.0-py2.py3-none-any.whl (15 kB)\n",
"Collecting uvicorn>=0.14.0 (from gradio)\n",
" Downloading uvicorn-0.22.0-py3-none-any.whl (58 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting websockets>=10.0 (from gradio)\n",
" Downloading websockets-11.0.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (129 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m129.9/129.9 kB\u001b[0m \u001b[31m17.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: entrypoints in /usr/local/lib/python3.10/dist-packages (from altair>=4.2.0->gradio) (0.4)\n",
"Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.10/dist-packages (from altair>=4.2.0->gradio) (4.3.3)\n",
"Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packages (from altair>=4.2.0->gradio) (0.12.0)\n",
"Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from gradio-client>=0.2.7->gradio) (2023.6.0)\n",
"Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from gradio-client>=0.2.7->gradio) (23.1)\n",
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from gradio-client>=0.2.7->gradio) (4.6.3)\n",
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.14.0->gradio) (3.12.2)\n",
"Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.14.0->gradio) (4.65.0)\n",
"Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py[linkify]>=2.0.0->gradio) (0.1.2)\n",
"Collecting linkify-it-py<3,>=1 (from markdown-it-py[linkify]>=2.0.0->gradio)\n",
" Downloading linkify_it_py-2.0.2-py3-none-any.whl (19 kB)\n",
"INFO: pip is looking at multiple versions of mdit-py-plugins to determine which version is compatible with other requirements. This could take a while.\n",
"Collecting mdit-py-plugins<=0.3.3 (from gradio)\n",
" Downloading mdit_py_plugins-0.3.2-py3-none-any.whl (50 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.4/50.4 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading mdit_py_plugins-0.3.1-py3-none-any.whl (46 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.5/46.5 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading mdit_py_plugins-0.3.0-py3-none-any.whl (43 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m43.7/43.7 kB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading mdit_py_plugins-0.2.8-py3-none-any.whl (41 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.0/41.0 kB\u001b[0m \u001b[31m5.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading mdit_py_plugins-0.2.7-py3-none-any.whl (41 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.0/41.0 kB\u001b[0m \u001b[31m5.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading mdit_py_plugins-0.2.6-py3-none-any.whl (39 kB)\n",
" Downloading mdit_py_plugins-0.2.5-py3-none-any.whl (39 kB)\n",
"INFO: pip is looking at multiple versions of mdit-py-plugins to determine which version is compatible with other requirements. This could take a while.\n",
" Downloading mdit_py_plugins-0.2.4-py3-none-any.whl (39 kB)\n",
" Downloading mdit_py_plugins-0.2.3-py3-none-any.whl (39 kB)\n",
" Downloading mdit_py_plugins-0.2.2-py3-none-any.whl (39 kB)\n",
" Downloading mdit_py_plugins-0.2.1-py3-none-any.whl (38 kB)\n",
" Downloading mdit_py_plugins-0.2.0-py3-none-any.whl (38 kB)\n",
"INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C.\n",
" Downloading mdit_py_plugins-0.1.0-py3-none-any.whl (37 kB)\n",
"Collecting markdown-it-py[linkify]>=2.0.0 (from gradio)\n",
" Downloading markdown_it_py-3.0.0-py3-none-any.whl (87 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m87.5/87.5 kB\u001b[0m \u001b[31m12.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading markdown_it_py-2.2.0-py3-none-any.whl (84 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.5/84.5 kB\u001b[0m \u001b[31m12.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->gradio) (2.8.2)\n",
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->gradio) (2022.7.1)\n",
"Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.10/dist-packages (from uvicorn>=0.14.0->gradio) (8.1.3)\n",
"Collecting h11>=0.8 (from uvicorn>=0.14.0->gradio)\n",
" Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m7.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (23.1.0)\n",
"Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (2.0.12)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (6.0.4)\n",
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (4.0.2)\n",
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (1.9.2)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (1.3.3)\n",
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (1.3.1)\n",
"Collecting starlette<0.28.0,>=0.27.0 (from fastapi->gradio)\n",
" Downloading starlette-0.27.0-py3-none-any.whl (66 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.0/67.0 kB\u001b[0m \u001b[31m9.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (2023.5.7)\n",
"Collecting httpcore<0.18.0,>=0.15.0 (from httpx->gradio)\n",
" Downloading httpcore-0.17.2-py3-none-any.whl (72 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m72.5/72.5 kB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (3.4)\n",
"Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (1.3.0)\n",
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gradio) (1.1.0)\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gradio) (0.11.0)\n",
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gradio) (4.40.0)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gradio) (1.4.4)\n",
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gradio) (3.1.0)\n",
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->gradio) (1.26.16)\n",
"Requirement already satisfied: anyio<5.0,>=3.0 in /usr/local/lib/python3.10/dist-packages (from httpcore<0.18.0,>=0.15.0->httpx->gradio) (3.7.0)\n",
"Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair>=4.2.0->gradio) (0.19.3)\n",
"Collecting uc-micro-py (from linkify-it-py<3,>=1->markdown-it-py[linkify]>=2.0.0->gradio)\n",
" Downloading uc_micro_py-1.0.2-py3-none-any.whl (6.2 kB)\n",
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->gradio) (1.16.0)\n",
"Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5.0,>=3.0->httpcore<0.18.0,>=0.15.0->httpx->gradio) (1.1.1)\n",
"Building wheels for collected packages: ffmpy\n",
" Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for ffmpy: filename=ffmpy-0.3.0-py3-none-any.whl size=4694 sha256=37c8296251b0f6a8cf0a1c9c0470f09722c9b3b0153d4ece85681f5c343fe7ca\n",
" Stored in directory: /root/.cache/pip/wheels/0c/c2/0e/3b9c6845c6a4e35beb90910cc70d9ac9ab5d47402bd62af0df\n",
"Successfully built ffmpy\n",
"Installing collected packages: pydub, ffmpy, websockets, uc-micro-py, semantic-version, python-multipart, orjson, markdown-it-py, h11, aiofiles, uvicorn, starlette, mdit-py-plugins, linkify-it-py, huggingface-hub, httpcore, httpx, fastapi, gradio-client, gradio\n",
" Attempting uninstall: markdown-it-py\n",
" Found existing installation: markdown-it-py 3.0.0\n",
" Uninstalling markdown-it-py-3.0.0:\n",
" Successfully uninstalled markdown-it-py-3.0.0\n",
"Successfully installed aiofiles-23.1.0 fastapi-0.98.0 ffmpy-0.3.0 gradio-3.35.2 gradio-client-0.2.7 h11-0.14.0 httpcore-0.17.2 httpx-0.24.1 huggingface-hub-0.15.1 linkify-it-py-2.0.2 markdown-it-py-2.2.0 mdit-py-plugins-0.3.3 orjson-3.9.1 pydub-0.25.1 python-multipart-0.0.6 semantic-version-2.10.0 starlette-0.27.0 uc-micro-py-1.0.2 uvicorn-0.22.0 websockets-11.0.3\n",
"Collecting langchain\n",
" Downloading langchain-0.0.218-py3-none-any.whl (1.2 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m31.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting bitsandbytes\n",
" Downloading bitsandbytes-0.39.1-py3-none-any.whl (97.1 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m97.1/97.1 MB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: PyYAML>=5.4.1 in /usr/local/lib/python3.10/dist-packages (from langchain) (6.0)\n",
"Requirement already satisfied: SQLAlchemy<3,>=1.4 in /usr/local/lib/python3.10/dist-packages (from langchain) (2.0.16)\n",
"Requirement already satisfied: aiohttp<4.0.0,>=3.8.3 in /usr/local/lib/python3.10/dist-packages (from langchain) (3.8.4)\n",
"Requirement already satisfied: async-timeout<5.0.0,>=4.0.0 in /usr/local/lib/python3.10/dist-packages (from langchain) (4.0.2)\n",
"Collecting dataclasses-json<0.6.0,>=0.5.7 (from langchain)\n",
" Downloading dataclasses_json-0.5.8-py3-none-any.whl (26 kB)\n",
"Collecting langchainplus-sdk>=0.0.17 (from langchain)\n",
" Downloading langchainplus_sdk-0.0.17-py3-none-any.whl (25 kB)\n",
"Requirement already satisfied: numexpr<3.0.0,>=2.8.4 in /usr/local/lib/python3.10/dist-packages (from langchain) (2.8.4)\n",
"Requirement already satisfied: numpy<2,>=1 in /usr/local/lib/python3.10/dist-packages (from langchain) (1.22.4)\n",
"Collecting openapi-schema-pydantic<2.0,>=1.2 (from langchain)\n",
" Downloading openapi_schema_pydantic-1.2.4-py3-none-any.whl (90 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m90.0/90.0 kB\u001b[0m \u001b[31m11.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: pydantic<2,>=1 in /usr/local/lib/python3.10/dist-packages (from langchain) (1.10.9)\n",
"Requirement already satisfied: requests<3,>=2 in /usr/local/lib/python3.10/dist-packages (from langchain) (2.27.1)\n",
"Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /usr/local/lib/python3.10/dist-packages (from langchain) (8.2.2)\n",
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (23.1.0)\n",
"Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (2.0.12)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (6.0.4)\n",
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.9.2)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.3.3)\n",
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.3.1)\n",
"Collecting marshmallow<4.0.0,>=3.3.0 (from dataclasses-json<0.6.0,>=0.5.7->langchain)\n",
" Downloading marshmallow-3.19.0-py3-none-any.whl (49 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.1/49.1 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting marshmallow-enum<2.0.0,>=1.5.1 (from dataclasses-json<0.6.0,>=0.5.7->langchain)\n",
" Downloading marshmallow_enum-1.5.1-py2.py3-none-any.whl (4.2 kB)\n",
"Collecting typing-inspect>=0.4.0 (from dataclasses-json<0.6.0,>=0.5.7->langchain)\n",
" Downloading typing_inspect-0.9.0-py3-none-any.whl (8.8 kB)\n",
"Requirement already satisfied: typing-extensions>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from pydantic<2,>=1->langchain) (4.6.3)\n",
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->langchain) (1.26.16)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->langchain) (2023.5.7)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->langchain) (3.4)\n",
"Requirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.10/dist-packages (from SQLAlchemy<3,>=1.4->langchain) (2.0.2)\n",
"Requirement already satisfied: packaging>=17.0 in /usr/local/lib/python3.10/dist-packages (from marshmallow<4.0.0,>=3.3.0->dataclasses-json<0.6.0,>=0.5.7->langchain) (23.1)\n",
"Collecting mypy-extensions>=0.3.0 (from typing-inspect>=0.4.0->dataclasses-json<0.6.0,>=0.5.7->langchain)\n",
" Downloading mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB)\n",
"Installing collected packages: bitsandbytes, mypy-extensions, marshmallow, typing-inspect, openapi-schema-pydantic, marshmallow-enum, langchainplus-sdk, dataclasses-json, langchain\n",
"Successfully installed bitsandbytes-0.39.1 dataclasses-json-0.5.8 langchain-0.0.218 langchainplus-sdk-0.0.17 marshmallow-3.19.0 marshmallow-enum-1.5.1 mypy-extensions-1.0.0 openapi-schema-pydantic-1.2.4 typing-inspect-0.9.0\n",
"Collecting faiss-cpu\n",
" Downloading faiss_cpu-1.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.6 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.6/17.6 MB\u001b[0m \u001b[31m62.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hInstalling collected packages: faiss-cpu\n",
"Successfully installed faiss-cpu-1.7.4\n",
"\u001b[31mERROR: Could not find a version that satisfies the requirement textwrap (from versions: none)\u001b[0m\u001b[31m\n",
"\u001b[0m\u001b[31mERROR: No matching distribution found for textwrap\u001b[0m\u001b[31m\n",
"\u001b[0mCollecting sentence-transformers\n",
" Downloading sentence-transformers-2.2.2.tar.gz (85 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.0/86.0 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"Collecting transformers<5.0.0,>=4.6.0 (from sentence-transformers)\n",
" Downloading transformers-4.30.2-py3-none-any.whl (7.2 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.2/7.2 MB\u001b[0m \u001b[31m57.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (4.65.0)\n",
"Requirement already satisfied: torch>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (2.0.1+cu118)\n",
"Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.15.2+cu118)\n",
"Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.22.4)\n",
"Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.2.2)\n",
"Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.10.1)\n",
"Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (3.8.1)\n",
"Collecting sentencepiece (from sentence-transformers)\n",
" Downloading sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m77.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: huggingface-hub>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.15.1)\n",
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (3.12.2)\n",
"Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (2023.6.0)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (2.27.1)\n",
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (6.0)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (4.6.3)\n",
"Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (23.1)\n",
"Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (1.11.1)\n",
"Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (3.1)\n",
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (3.1.2)\n",
"Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (2.0.0)\n",
"Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.6.0->sentence-transformers) (3.25.2)\n",
"Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.6.0->sentence-transformers) (16.0.6)\n",
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers) (2022.10.31)\n",
"Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers<5.0.0,>=4.6.0->sentence-transformers)\n",
" Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m78.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting safetensors>=0.3.1 (from transformers<5.0.0,>=4.6.0->sentence-transformers)\n",
" Downloading safetensors-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m61.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (8.1.3)\n",
"Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (1.2.0)\n",
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->sentence-transformers) (3.1.0)\n",
"Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision->sentence-transformers) (8.4.0)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.6.0->sentence-transformers) (2.1.3)\n",
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (1.26.16)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (2023.5.7)\n",
"Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (2.0.12)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (3.4)\n",
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.6.0->sentence-transformers) (1.3.0)\n",
"Building wheels for collected packages: sentence-transformers\n",
" Building wheel for sentence-transformers (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for sentence-transformers: filename=sentence_transformers-2.2.2-py3-none-any.whl size=125926 sha256=8ac9b584f42597843ce222154270f2fe13d6ba19bdb343887f1c2a956f073a78\n",
" Stored in directory: /root/.cache/pip/wheels/62/f2/10/1e606fd5f02395388f74e7462910fe851042f97238cbbd902f\n",
"Successfully built sentence-transformers\n",
"Installing collected packages: tokenizers, sentencepiece, safetensors, transformers, sentence-transformers\n",
"Successfully installed safetensors-0.3.1 sentence-transformers-2.2.2 sentencepiece-0.1.99 tokenizers-0.13.3 transformers-4.30.2\n",
"Collecting accelerate\n",
" Downloading accelerate-0.20.3-py3-none-any.whl (227 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m227.6/227.6 kB\u001b[0m \u001b[31m12.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from accelerate) (1.22.4)\n",
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from accelerate) (23.1)\n",
"Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate) (5.9.5)\n",
"Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate) (6.0)\n",
"Requirement already satisfied: torch>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from accelerate) (2.0.1+cu118)\n",
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->accelerate) (3.12.2)\n",
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->accelerate) (4.6.3)\n",
"Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->accelerate) (1.11.1)\n",
"Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->accelerate) (3.1)\n",
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->accelerate) (3.1.2)\n",
"Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->accelerate) (2.0.0)\n",
"Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.6.0->accelerate) (3.25.2)\n",
"Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.6.0->accelerate) (16.0.6)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.6.0->accelerate) (2.1.3)\n",
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.6.0->accelerate) (1.3.0)\n",
"Installing collected packages: accelerate\n",
"Successfully installed accelerate-0.20.3\n",
"Collecting llama-cpp-python\n",
" Downloading llama_cpp_python-0.1.66.tar.gz (1.5 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.5/1.5 MB\u001b[0m \u001b[31m41.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
"Requirement already satisfied: typing-extensions>=4.5.0 in /usr/local/lib/python3.10/dist-packages (from llama-cpp-python) (4.6.3)\n",
"Requirement already satisfied: numpy>=1.20.0 in /usr/local/lib/python3.10/dist-packages (from llama-cpp-python) (1.22.4)\n",
"Collecting diskcache>=5.6.1 (from llama-cpp-python)\n",
" Downloading diskcache-5.6.1-py3-none-any.whl (45 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.6/45.6 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hBuilding wheels for collected packages: llama-cpp-python\n",
" Building wheel for llama-cpp-python (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for llama-cpp-python: filename=llama_cpp_python-0.1.66-cp310-cp310-linux_x86_64.whl size=265566 sha256=0ad80b78bd391d6e1f5bb2b9feeabc814bdfd95917bbf73c2b7bb7219a199dea\n",
" Stored in directory: /root/.cache/pip/wheels/9c/0e/e3/5c3b6fdb7a015cc1c18596fddf79d795b64347f18809c78fee\n",
"Successfully built llama-cpp-python\n",
"Installing collected packages: diskcache, llama-cpp-python\n",
"Successfully installed diskcache-5.6.1 llama-cpp-python-0.1.66\n",
" Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
" Building wheel for transformers (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n"
]
}
],
"source": [
"!pip install gradio\n",
"!pip install langchain bitsandbytes\n",
"!pip install faiss-cpu\n",
"!pip install textwrap torch datasets loralib sentencepiece\n",
"!pip install sentence-transformers\n",
"!pip install accelerate\n",
"!pip install llama-cpp-python\n",
"!pip -q install git+https://github.com/huggingface/transformers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "kzA0z-IWIDCW"
},
"outputs": [],
"source": [
"# !cd llama.cpp && pwd"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "GQU3WlKeHeEv"
},
"outputs": [],
"source": [
"# !git clone https://github.com/ggerganov/llama.cpp\n",
"# !cd llama.cpp && make"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "OPowJEDgJjPc"
},
"outputs": [],
"source": [
"# !ls ./models"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "JuRpTwzFIHvY",
"outputId": "d483850b-8c45-48a8-a89d-3ed54377d576"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading...\n",
"From: https://drive.google.com/uc?id=1oSCsACt5FrBLCD_T5FTzremT5y2b2KxK\n",
"To: /content/index.faiss\n",
"100% 121M/121M [00:04<00:00, 27.5MB/s]\n",
"Downloading...\n",
"From: https://drive.google.com/uc?id=1989gHL2kGm1sSLuVKk6ao8loGLvt8uR-\n",
"To: /content/index.pkl\n",
"100% 37.5M/37.5M [00:01<00:00, 29.2MB/s]\n"
]
}
],
"source": [
"!gdown 1oSCsACt5FrBLCD_T5FTzremT5y2b2KxK\n",
"!gdown 1989gHL2kGm1sSLuVKk6ao8loGLvt8uR-\n",
"!mkdir nbdt_data\n",
"!cp index.faiss nbdt_data\n",
"!cp index.pkl nbdt_data"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000,
"referenced_widgets": [
"b427d9e2d2ee4f828ee896a03e9f38eb",
"68db08a240724f9fb38f464db4c73b84",
"7da5f39db40f465caea5dd36ce881237",
"56796deef330429d9a9fec4432ca54d4",
"435b61fe3135482587f1dcc65306e114",
"d83e0c6ff5db4a29a05fed5b72773be7",
"6885776cbe9449f8864676e1e83b4c19",
"f32bc75b18d140aaba55de24947dbb3f",
"7530c375556442249c0f19ea435a629f",
"05a91c8da3054845bff97967fb17372d",
"64906f3cba5c433baae65ecaf06612af"
]
},
"id": "4xhtkUdY7K6F",
"outputId": "6223fbc0-3105-4e83-b71f-c15a7cad9f5b"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:accelerate.utils.modeling:The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b427d9e2d2ee4f828ee896a03e9f38eb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/14 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:sentence_transformers.SentenceTransformer:No sentence-transformers model found with name /root/.cache/torch/sentence_transformers/biodatlab_MIReAD-Neuro-Large. Creating a new one with MEAN pooling.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
"Running on public URL: https://1ceb8c0439dfe6906c.gradio.live\n",
"\n",
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"https://1ceb8c0439dfe6906c.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Keyboard interruption in main thread... closing server.\n"
]
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #800000; text-decoration-color: #800000\">╭─────────────────────────────── </span><span style=\"color: #800000; text-decoration-color: #800000; font-weight: bold\">Traceback </span><span style=\"color: #bf7f7f; text-decoration-color: #bf7f7f; font-weight: bold\">(most recent call last)</span><span style=\"color: #800000; text-decoration-color: #800000\"> ────────────────────────────────╮</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/usr/local/lib/python3.10/dist-packages/gradio/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">blocks.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">2058</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">block_thread</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2055 </span><span style=\"color: #bfbfbf; text-decoration-color: #bfbfbf\">│ │ </span><span style=\"color: #808000; text-decoration-color: #808000\">\"\"\"Block main thread until interrupted by user.\"\"\"</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2056 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">try</span>: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2057 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">while</span> <span style=\"color: #0000ff; text-decoration-color: #0000ff\">True</span>: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>2058 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ </span>time.sleep(<span style=\"color: #0000ff; text-decoration-color: #0000ff\">0.1</span>) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2059 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">except</span> (<span style=\"color: #00ffff; text-decoration-color: #00ffff\">KeyboardInterrupt</span>, <span style=\"color: #00ffff; text-decoration-color: #00ffff\">OSError</span>): <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2060 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">print</span>(<span style=\"color: #808000; text-decoration-color: #808000\">\"Keyboard interruption in main thread... closing server.\"</span>) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2061 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.server.close() <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">╰──────────────────────────────────────────────────────────────────────────────────────────────────╯</span>\n",
"<span style=\"color: #ff0000; text-decoration-color: #ff0000; font-weight: bold\">KeyboardInterrupt</span>\n",
"\n",
"<span style=\"font-style: italic\">During handling of the above exception, another exception occurred:</span>\n",
"\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">╭─────────────────────────────── </span><span style=\"color: #800000; text-decoration-color: #800000; font-weight: bold\">Traceback </span><span style=\"color: #bf7f7f; text-decoration-color: #bf7f7f; font-weight: bold\">(most recent call last)</span><span style=\"color: #800000; text-decoration-color: #800000\"> ────────────────────────────────╮</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\"><cell line: 236></span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">236</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/usr/local/lib/python3.10/dist-packages/gradio/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">blocks.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">1970</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">launch</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1967 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1968 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"># Block main thread if debug==True</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1969 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">if</span> debug <span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">or</span> <span style=\"color: #00ffff; text-decoration-color: #00ffff\">int</span>(os.getenv(<span style=\"color: #808000; text-decoration-color: #808000\">\"GRADIO_DEBUG\"</span>, <span style=\"color: #0000ff; text-decoration-color: #0000ff\">0</span>)) == <span style=\"color: #0000ff; text-decoration-color: #0000ff\">1</span>: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>1970 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.block_thread() <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1971 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"># Block main thread if running in a script to stop script from exiting</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1972 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span>is_in_interactive_mode = <span style=\"color: #00ffff; text-decoration-color: #00ffff\">bool</span>(<span style=\"color: #00ffff; text-decoration-color: #00ffff\">getattr</span>(sys, <span style=\"color: #808000; text-decoration-color: #808000\">\"ps1\"</span>, sys.flags.interactive)) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1973 </span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/usr/local/lib/python3.10/dist-packages/gradio/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">blocks.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">2061</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">block_thread</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2058 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ </span>time.sleep(<span style=\"color: #0000ff; text-decoration-color: #0000ff\">0.1</span>) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2059 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">except</span> (<span style=\"color: #00ffff; text-decoration-color: #00ffff\">KeyboardInterrupt</span>, <span style=\"color: #00ffff; text-decoration-color: #00ffff\">OSError</span>): <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2060 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">print</span>(<span style=\"color: #808000; text-decoration-color: #808000\">\"Keyboard interruption in main thread... closing server.\"</span>) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>2061 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.server.close() <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2062 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">for</span> tunnel <span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">in</span> CURRENT_TUNNELS: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2063 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ </span>tunnel.kill() <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2064 </span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/usr/local/lib/python3.10/dist-packages/gradio/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">networking.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">43</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">close</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 40 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ </span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 41 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">def</span> <span style=\"color: #00ff00; text-decoration-color: #00ff00\">close</span>(<span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>): <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 42 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.should_exit = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">True</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span> 43 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.thread.join() <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 44 </span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 45 </span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 46 </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">def</span> <span style=\"color: #00ff00; text-decoration-color: #00ff00\">get_first_available_port</span>(initial: <span style=\"color: #00ffff; text-decoration-color: #00ffff\">int</span>, final: <span style=\"color: #00ffff; text-decoration-color: #00ffff\">int</span>) -> <span style=\"color: #00ffff; text-decoration-color: #00ffff\">int</span>: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/usr/lib/python3.10/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">threading.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">1096</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">join</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1093 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">raise</span> <span style=\"color: #00ffff; text-decoration-color: #00ffff\">RuntimeError</span>(<span style=\"color: #808000; text-decoration-color: #808000\">\"cannot join current thread\"</span>) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1094 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1095 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">if</span> timeout <span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">is</span> <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span>: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>1096 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>._wait_for_tstate_lock() <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1097 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">else</span>: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1098 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"># the behavior of a negative timeout isn't documented, but</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1099 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"># historically .join(timeout=x) for x<0 has acted as if timeout=0</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/usr/lib/python3.10/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">threading.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">1116</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">_wait_for_tstate_lock</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1113 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">return</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1114 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1115 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">try</span>: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>1116 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">if</span> lock.acquire(block, timeout): <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1117 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ </span>lock.release() <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1118 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>._stop() <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1119 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">except</span>: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">╰──────────────────────────────────────────────────────────────────────────────────────────────────╯</span>\n",
"<span style=\"color: #ff0000; text-decoration-color: #ff0000; font-weight: bold\">KeyboardInterrupt</span>\n",
"</pre>\n"
],
"text/plain": [
"\u001b[31m╭─\u001b[0m\u001b[31m──────────────────────────────\u001b[0m\u001b[31m \u001b[0m\u001b[1;31mTraceback \u001b[0m\u001b[1;2;31m(most recent call last)\u001b[0m\u001b[31m \u001b[0m\u001b[31m───────────────────────────────\u001b[0m\u001b[31m─╮\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2;33m/usr/local/lib/python3.10/dist-packages/gradio/\u001b[0m\u001b[1;33mblocks.py\u001b[0m:\u001b[94m2058\u001b[0m in \u001b[92mblock_thread\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m2055 \u001b[0m\u001b[2;90m│ │ \u001b[0m\u001b[33m\"\"\"Block main thread until interrupted by user.\"\"\"\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m2056 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mtry\u001b[0m: \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m2057 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[94mwhile\u001b[0m \u001b[94mTrue\u001b[0m: \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m2058 \u001b[2m│ │ │ │ \u001b[0mtime.sleep(\u001b[94m0.1\u001b[0m) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m2059 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mexcept\u001b[0m (\u001b[96mKeyboardInterrupt\u001b[0m, \u001b[96mOSError\u001b[0m): \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m2060 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[96mprint\u001b[0m(\u001b[33m\"\u001b[0m\u001b[33mKeyboard interruption in main thread... closing server.\u001b[0m\u001b[33m\"\u001b[0m) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m2061 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[96mself\u001b[0m.server.close() \u001b[31m│\u001b[0m\n",
"\u001b[31m╰──────────────────────────────────────────────────────────────────────────────────────────────────╯\u001b[0m\n",
"\u001b[1;91mKeyboardInterrupt\u001b[0m\n",
"\n",
"\u001b[3mDuring handling of the above exception, another exception occurred:\u001b[0m\n",
"\n",
"\u001b[31m╭─\u001b[0m\u001b[31m──────────────────────────────\u001b[0m\u001b[31m \u001b[0m\u001b[1;31mTraceback \u001b[0m\u001b[1;2;31m(most recent call last)\u001b[0m\u001b[31m \u001b[0m\u001b[31m───────────────────────────────\u001b[0m\u001b[31m─╮\u001b[0m\n",
"\u001b[31m│\u001b[0m in \u001b[92m<cell line: 236>\u001b[0m:\u001b[94m236\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2;33m/usr/local/lib/python3.10/dist-packages/gradio/\u001b[0m\u001b[1;33mblocks.py\u001b[0m:\u001b[94m1970\u001b[0m in \u001b[92mlaunch\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1967 \u001b[0m\u001b[2m│ │ \u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1968 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[2m# Block main thread if debug==True\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1969 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mif\u001b[0m debug \u001b[95mor\u001b[0m \u001b[96mint\u001b[0m(os.getenv(\u001b[33m\"\u001b[0m\u001b[33mGRADIO_DEBUG\u001b[0m\u001b[33m\"\u001b[0m, \u001b[94m0\u001b[0m)) == \u001b[94m1\u001b[0m: \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m1970 \u001b[2m│ │ │ \u001b[0m\u001b[96mself\u001b[0m.block_thread() \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1971 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[2m# Block main thread if running in a script to stop script from exiting\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1972 \u001b[0m\u001b[2m│ │ \u001b[0mis_in_interactive_mode = \u001b[96mbool\u001b[0m(\u001b[96mgetattr\u001b[0m(sys, \u001b[33m\"\u001b[0m\u001b[33mps1\u001b[0m\u001b[33m\"\u001b[0m, sys.flags.interactive)) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1973 \u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2;33m/usr/local/lib/python3.10/dist-packages/gradio/\u001b[0m\u001b[1;33mblocks.py\u001b[0m:\u001b[94m2061\u001b[0m in \u001b[92mblock_thread\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m2058 \u001b[0m\u001b[2m│ │ │ │ \u001b[0mtime.sleep(\u001b[94m0.1\u001b[0m) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m2059 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mexcept\u001b[0m (\u001b[96mKeyboardInterrupt\u001b[0m, \u001b[96mOSError\u001b[0m): \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m2060 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[96mprint\u001b[0m(\u001b[33m\"\u001b[0m\u001b[33mKeyboard interruption in main thread... closing server.\u001b[0m\u001b[33m\"\u001b[0m) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m2061 \u001b[2m│ │ │ \u001b[0m\u001b[96mself\u001b[0m.server.close() \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m2062 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[94mfor\u001b[0m tunnel \u001b[95min\u001b[0m CURRENT_TUNNELS: \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m2063 \u001b[0m\u001b[2m│ │ │ │ \u001b[0mtunnel.kill() \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m2064 \u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2;33m/usr/local/lib/python3.10/dist-packages/gradio/\u001b[0m\u001b[1;33mnetworking.py\u001b[0m:\u001b[94m43\u001b[0m in \u001b[92mclose\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m 40 \u001b[0m\u001b[2m│ \u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m 41 \u001b[0m\u001b[2m│ \u001b[0m\u001b[94mdef\u001b[0m \u001b[92mclose\u001b[0m(\u001b[96mself\u001b[0m): \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m 42 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[96mself\u001b[0m.should_exit = \u001b[94mTrue\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m 43 \u001b[2m│ │ \u001b[0m\u001b[96mself\u001b[0m.thread.join() \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m 44 \u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m 45 \u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m 46 \u001b[0m\u001b[94mdef\u001b[0m \u001b[92mget_first_available_port\u001b[0m(initial: \u001b[96mint\u001b[0m, final: \u001b[96mint\u001b[0m) -> \u001b[96mint\u001b[0m: \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2;33m/usr/lib/python3.10/\u001b[0m\u001b[1;33mthreading.py\u001b[0m:\u001b[94m1096\u001b[0m in \u001b[92mjoin\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1093 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[94mraise\u001b[0m \u001b[96mRuntimeError\u001b[0m(\u001b[33m\"\u001b[0m\u001b[33mcannot join current thread\u001b[0m\u001b[33m\"\u001b[0m) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1094 \u001b[0m\u001b[2m│ │ \u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1095 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mif\u001b[0m timeout \u001b[95mis\u001b[0m \u001b[94mNone\u001b[0m: \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m1096 \u001b[2m│ │ │ \u001b[0m\u001b[96mself\u001b[0m._wait_for_tstate_lock() \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1097 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94melse\u001b[0m: \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1098 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[2m# the behavior of a negative timeout isn't documented, but\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1099 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[2m# historically .join(timeout=x) for x<0 has acted as if timeout=0\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2;33m/usr/lib/python3.10/\u001b[0m\u001b[1;33mthreading.py\u001b[0m:\u001b[94m1116\u001b[0m in \u001b[92m_wait_for_tstate_lock\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1113 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[94mreturn\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1114 \u001b[0m\u001b[2m│ │ \u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1115 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mtry\u001b[0m: \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m1116 \u001b[2m│ │ │ \u001b[0m\u001b[94mif\u001b[0m lock.acquire(block, timeout): \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1117 \u001b[0m\u001b[2m│ │ │ │ \u001b[0mlock.release() \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1118 \u001b[0m\u001b[2m│ │ │ │ \u001b[0m\u001b[96mself\u001b[0m._stop() \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m1119 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mexcept\u001b[0m: \u001b[31m│\u001b[0m\n",
"\u001b[31m╰──────────────────────────────────────────────────────────────────────────────────────────────────╯\u001b[0m\n",
"\u001b[1;91mKeyboardInterrupt\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import gradio as gr\n",
"from langchain.vectorstores import FAISS\n",
"from langchain.embeddings import HuggingFaceEmbeddings\n",
"from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig, pipeline\n",
"from transformers import BitsAndBytesConfig\n",
"import textwrap\n",
"import torch\n",
"\n",
"quant_config = BitsAndBytesConfig(load_in_4bit=True,\n",
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
" bnb_4bit_use_double_quant=True,\n",
" )\n",
"\n",
"prompt = 'BEGINNING OF CONVERSATION: USER: \\\n",
"I will provide you with two abstracts, I intend to use the author of the second to review the first. Tell me in 15 words why or why not the second author is a good fit to review the first paper.\\n\\\n",
"Abstract To Be Reviewed: '\n",
"\n",
"tokenizer = LlamaTokenizer.from_pretrained(\"samwit/koala-7b\")\n",
"\n",
"base_model = LlamaForCausalLM.from_pretrained(\n",
" \"samwit/koala-7b\",\n",
" load_in_8bit=False,\n",
" load_in_4bit=True,\n",
" device_map='auto',\n",
" offload_folder='offloaded',\n",
" quantization_config=quant_config\n",
")\n",
"\n",
"pipe = pipeline(\n",
" \"text-generation\",\n",
" model=base_model,\n",
" tokenizer=tokenizer,\n",
" max_length=1024,\n",
" temperature=0.7,\n",
" top_p=0.95,\n",
" repetition_penalty=1.15,\n",
" # device=-1\n",
")\n",
"\n",
"\n",
"def wrap_text_preserve_newlines(text, width=110):\n",
" # Split the input text into lines based on newline characters\n",
" lines = text.split('\\n')\n",
" # Wrap each line individually\n",
" wrapped_lines = [textwrap.fill(line, width=width) for line in lines]\n",
" # Join the wrapped lines back together using newline characters\n",
" wrapped_text = '\\n'.join(wrapped_lines)\n",
" return wrapped_text\n",
"\n",
"\n",
"def create_miread_embed(sents, bundle):\n",
" tokenizer = bundle[0]\n",
" model = bundle[1]\n",
" model.cpu()\n",
" tokens = tokenizer(sents,\n",
" max_length=512,\n",
" padding=True,\n",
" truncation=True,\n",
" return_tensors=\"pt\"\n",
" )\n",
" device = torch.device('cpu')\n",
" tokens = tokens.to(device)\n",
" with torch.no_grad():\n",
" out = model.bert(**tokens)\n",
" feature = out.last_hidden_state[:, 0, :]\n",
" return feature.cpu()\n",
"\n",
"\n",
"def get_matches(query, k):\n",
" matches = vecdb.similarity_search_with_score(query, k=k)\n",
" return matches\n",
"\n",
"\n",
"def inference(query,k=30,mode=''):\n",
" matches = get_matches(query,k)\n",
" j_bucket = {}\n",
" n_table = []\n",
" a_table = []\n",
" r_table = []\n",
" scores = [round(match[1].item(),3) for match in matches]\n",
" min_score = min(scores)\n",
" max_score = max(scores)\n",
" normaliser = lambda x: round(1 - (x-min_score)/max_score,3)\n",
" for i,match in enumerate(matches):\n",
" doc = match[0]\n",
" score = normaliser(round(match[1].item(),3))\n",
" title = doc.metadata['title']\n",
" author = doc.metadata['authors'][0]\n",
" date = doc.metadata.get('date','None')\n",
" link = doc.metadata.get('link','None')\n",
" submitter = doc.metadata.get('submitter','None')\n",
" journal = doc.metadata.get('journal','None')\n",
" abstract = doc.metadata.get('abstract','')\n",
"\n",
" # For journals\n",
" if journal not in j_bucket:\n",
" j_bucket[journal] = score\n",
" else:\n",
" j_bucket[journal] += score\n",
"\n",
" # For authors\n",
" record = [i+1,\n",
" score,\n",
" author,\n",
" title,\n",
" link,\n",
" date]\n",
" n_table.append(record)\n",
"\n",
" # For abstracts\n",
" record = [i+1,\n",
" title,\n",
" author,\n",
" submitter,\n",
" journal,\n",
" date,\n",
" link,\n",
" score\n",
" ]\n",
" a_table.append(record)\n",
"\n",
" # For reviewer\n",
" r_record = [i+1,\n",
" score,\n",
" author,\n",
" abstract,\n",
" title,\n",
" link,\n",
" date]\n",
" r_table.append(r_record)\n",
"\n",
"\n",
"\n",
" if (mode):\n",
" dataset = [prompt + query + '\\n Candidate Abstract: ' + row[3] + '\\n GPT:' for row in r_table[:5]]\n",
" outputs = pipe(dataset)\n",
" outputs = [output[0]['generated_text'].split('GPT:')[1] for output in outputs]\n",
" r_table = [[r[0],r[1],r[2],outputs[i],r[4],r[5],r[6]] for i,r in enumerate(r_table[:5])]\n",
" # print(f\"{i}/5 done\")\n",
" else:\n",
" outputs = ['']*5\n",
" r_table = [[r[0],r[1],r[2],outputs[i],r[4],r[5],r[6]] for i,r in enumerate(r_table[:5])]\n",
"\n",
" j_table = sorted([[journal,score] for journal,score in j_bucket.items()],key= lambda x : x[1],reverse=True)\n",
" j_table = [[i+1,item[0],item[1]] for i,item in enumerate(j_table)]\n",
" j_output= gr.Dataframe.update(value=j_table,visible=True)\n",
" n_output= gr.Dataframe.update(value=n_table,visible=True)\n",
" a_output = gr.Dataframe.update(value=a_table,visible=True)\n",
" if mode:\n",
" r_output = gr.Dataframe.update(value=r_table,visible=True)\n",
" return r_output\n",
"\n",
" return [a_output,j_output,n_output]\n",
"\n",
"def k_inference(query,k):\n",
" return inference(query,k,'koala')\n",
"\n",
"model_name = \"biodatlab/MIReAD-Neuro-Large\"\n",
"model_kwargs = {'device': 'cpu'}\n",
"encode_kwargs = {'normalize_embeddings': False}\n",
"faiss_embedder = HuggingFaceEmbeddings(\n",
" model_name=model_name,\n",
" model_kwargs=model_kwargs,\n",
" encode_kwargs=encode_kwargs\n",
")\n",
"\n",
"vecdb = FAISS.load_local(\"nbdt_data\", faiss_embedder)\n",
"\n",
"\n",
"with gr.Blocks(theme=gr.themes.Soft()) as demo:\n",
" gr.Markdown(\"# NBDT Recommendation Engine for Editors\")\n",
" gr.Markdown(\"NBDT Recommendation Engine for Editors is a tool for neuroscience authors/abstracts/journalsrecommendation built for NBDT journal editors. \\\n",
" It aims to help an editor to find similar reviewers, abstracts, and journals to a given submitted abstract.\\\n",
" To find a recommendation, paste a `title[SEP]abstract` or `abstract` in the text box below and click \\\"Find Matches\\\".\\\n",
" Then, you can hover to authors/abstracts/journals tab to find a suggested list.\\\n",
" The data in our current demo is selected from 2018 to 2022. We will update the data monthly for an up-to-date publications.\")\n",
"\n",
"\n",
" abst = gr.Textbox(label=\"Abstract\",lines=10)\n",
"\n",
" k = gr.Slider(1,100,step=1,value=50,label=\"Number of matches to consider\")\n",
"\n",
" action_btn = gr.Button(value=\"Find Matches\")\n",
"\n",
" with gr.Tab(\"Authors\"):\n",
" n_output = gr.Dataframe(\n",
" headers=['No.','Score','Name','Title','Link','Date'],\n",
" datatype=['number','number','str','str','str','str'],\n",
" col_count=(6, \"fixed\"),\n",
" wrap=True,\n",
" visible=False\n",
" )\n",
" with gr.Tab(\"Abstracts\"):\n",
" a_output = gr.Dataframe(\n",
" headers=['No.','Title','Author','Corresponding Author','Journal','Date','Link','Score'],\n",
" datatype=['number','str','str','str','str','str','str','number'],\n",
" col_count=(8,\"fixed\"),\n",
" wrap=True,\n",
" visible=False\n",
" )\n",
" with gr.Tab(\"Journals\"):\n",
" j_output = gr.Dataframe(\n",
" headers=['No.','Name','Score'],\n",
" datatype=['number','str','number'],\n",
" col_count=(3, \"fixed\"),\n",
" wrap=True,\n",
" visible=False\n",
" )\n",
"\n",
" llm_btn = gr.Button(value=\"Listen to Koala's advice\")\n",
" with gr.Tab(\"Reviewers (New)\"):\n",
" r_output = gr.Dataframe(\n",
" headers=['No.','Score','Name','Title','Reasoning','Link','Date'],\n",
" datatype=['number','number','str','str','str','str','str'],\n",
" col_count=(7,\"fixed\"),\n",
" wrap=True,\n",
" visible=True\n",
" )\n",
"\n",
" action_btn.click(fn=inference,\n",
" inputs=[\n",
" abst,\n",
" k,\n",
" # modes,\n",
" ],\n",
" outputs=[a_output,j_output,n_output],\n",
" api_name=\"neurojane\")\n",
" llm_btn.click(fn=k_inference,\n",
" inputs=[\n",
" abst,\n",
" k,\n",
" ],\n",
" outputs = [r_output],\n",
" api_name=\"koala\")\n",
"\n",
"demo.launch(debug=True,share=True)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "UQhTTPJGBdwo",
"outputId": "93a00886-db64-4b6a-88b5-51f2d88c58e5"
},
"outputs": [
{
"data": {
"text/plain": [
"{'max_rows': None,\n",
" 'max_cols': None,\n",
" 'label': None,\n",
" 'show_label': None,\n",
" 'scale': None,\n",
" 'min_width': None,\n",
" 'interactive': None,\n",
" 'visible': True,\n",
" 'value': [[1,\n",
" 1.0,\n",
" 'philipp berens',\n",
" \" Both authors have expertise in neuroscience and machine learning, making them suitable candidates to review each other's work. The first author's research focuses on understanding the mechanisms underlying learning and plasticity, while the second author's work involves developing new algorithms for spike inference from calcium signals. These areas of expertise complement each other, as the first author's insights into the nature of plasticity can inform the development of more effective spike inference algorithms.\",\n",
" 'Supervised learning sets benchmark for robust spike detection from calcium imaging signals',\n",
" 'https://www.semanticscholar.org/paper/786f9831900ca34d8200291e5a72d2f14ad9b336',\n",
" 2015],\n",
" [2,\n",
" 0.974,\n",
" 'daniel butts',\n",
" \" Both authors have expertise in neuroscience and machine learning, making them suitable candidates to review each other's work. The first author's research focuses on understanding the mechanisms underlying learning and plasticity, while the second author's work uses information theory to analyze neural ensembles. While both authors may have different perspectives and approaches, they share a common goal of advancing our understanding of the brain and its functions.\",\n",
" 'Information Theoretic Measure of Stimulus Significance is Not Confounded by Stimulus Correlations or Non-Linearities',\n",
" 'https://www.semanticscholar.org/paper/f6767047e84872f4cb09f94c26b1d21e3ef9d55d',\n",
" 2002],\n",
" [3,\n",
" 0.952,\n",
" 'alex williams',\n",
" ' The candidate abstract provides a novel approach to understanding neural sequence data using a point process model that captures both the timing and occurrence of neural activity. This approach addresses some of the limitations of previous methods, including the need for spike times to be discretized and the use of a sub-optimal least-squares criterion. Additionally, the proposed method allows for the incorporation of learned time warping parameters, which have been shown to be effective in modeling variable sequence lengths. Overall, this approach has potential applications in understanding various aspects of neural processing, including working memory, motor production, and learning.',\n",
" 'Point process models for sequence detection in high-dimensional neural spike trains',\n",
" 'https://www.semanticscholar.org/paper/2942ed449bc35f06170342b61ebb6fc2dd6183c9',\n",
" 2020],\n",
" [4,\n",
" 0.931,\n",
" 'philipp berens',\n",
" \" Both authors have expertise in neuroscience and machine learning, making them suitable candidates to review each other's work. The first author's research focuses on understanding the mechanisms underlying learning and plasticity, while the second author's work involves developing new algorithms for spike rate inference in calcium imaging studies.\",\n",
" 'Supervised learning sets benchmark for robust spike rate inference from calcium imaging signals',\n",
" 'https://www.semanticscholar.org/paper/ff3c6755a17026d234978095dcc36a43b551ac89',\n",
" 2015],\n",
" [5,\n",
" 0.924,\n",
" 'konrad kording',\n",
" \" Both authors have expertise in the field of artificial intelligence and machine learning, specifically in the area of deep learning. They also have experience in theoretical neuroscience and cognitive psychology. However, the candidate's research focuses more specifically on the topic of perceptual processing and the use of adversarial algorithms as a potential mechanism for learning in the brain. On the other hand, the author of the original abstract reviews the existing literature on plasticity-related mechanisms and argues that gradients are a key concept for understanding the process of neuronal plasticity. While both authors have valuable insights into the topic, it may be beneficial to consult with experts in both fields to gain a comprehensive understanding of the subject matter.\",\n",
" 'Learning to infer in recurrent biological networks',\n",
" 'https://www.semanticscholar.org/paper/482085ff18eaefb262b8217797e99a2cca339938',\n",
" 2020]],\n",
" '__type__': 'update'}"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"k_inference('The experimental study of learning and plasticity has always been driven by an implicit question: how can physiological changes be adaptive and improve performance? For example, in Hebbian plasticity only synapses from presynaptic neurons that were active are changed, avoiding useless changes. Similarly, in dopamine-gated learning synapse changes depend on reward or lack thereof and do not change when everything is predictable. Within machine learning we can make the question of which changes are adaptive concrete: performance improves when changes correlate with the gradient of an objective function quantifying performance. This result is general for any system that improves through small changes. As such, physiology has always implicitly been seeking mechanisms that allow the brain to approximate gradients. Coming from this perspective we review the existing literature on plasticity-related mechanisms, and we show how these mechanisms relate to gradient estimation. We argue that gradients are a unifying idea to explain the many facets of neuronal plasticity.',k=10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Nxi4msI_aIl2"
},
"outputs": [],
"source": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"05a91c8da3054845bff97967fb17372d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"435b61fe3135482587f1dcc65306e114": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"56796deef330429d9a9fec4432ca54d4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_05a91c8da3054845bff97967fb17372d",
"placeholder": "",
"style": "IPY_MODEL_64906f3cba5c433baae65ecaf06612af",
"value": " 14/14 [02:48<00:00, 11.14s/it]"
}
},
"64906f3cba5c433baae65ecaf06612af": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"6885776cbe9449f8864676e1e83b4c19": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"68db08a240724f9fb38f464db4c73b84": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d83e0c6ff5db4a29a05fed5b72773be7",
"placeholder": "",
"style": "IPY_MODEL_6885776cbe9449f8864676e1e83b4c19",
"value": "Loading checkpoint shards: 100%"
}
},
"7530c375556442249c0f19ea435a629f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"7da5f39db40f465caea5dd36ce881237": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_f32bc75b18d140aaba55de24947dbb3f",
"max": 14,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_7530c375556442249c0f19ea435a629f",
"value": 14
}
},
"b427d9e2d2ee4f828ee896a03e9f38eb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_68db08a240724f9fb38f464db4c73b84",
"IPY_MODEL_7da5f39db40f465caea5dd36ce881237",
"IPY_MODEL_56796deef330429d9a9fec4432ca54d4"
],
"layout": "IPY_MODEL_435b61fe3135482587f1dcc65306e114"
}
},
"d83e0c6ff5db4a29a05fed5b72773be7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"f32bc75b18d140aaba55de24947dbb3f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|