File size: 119,500 Bytes
c5ff415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81222f4
c5ff415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81222f4
c5ff415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
{
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "H-pmLfmm7lus",
        "outputId": "c76797e6-3e80-408f-99d2-c853f3b29ce9"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Collecting gradio\n",
            "  Downloading gradio-3.35.2-py3-none-any.whl (19.7 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m19.7/19.7 MB\u001b[0m \u001b[31m80.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting aiofiles (from gradio)\n",
            "  Downloading aiofiles-23.1.0-py3-none-any.whl (14 kB)\n",
            "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from gradio) (3.8.4)\n",
            "Requirement already satisfied: altair>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (4.2.2)\n",
            "Collecting fastapi (from gradio)\n",
            "  Downloading fastapi-0.98.0-py3-none-any.whl (56 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.0/57.0 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting ffmpy (from gradio)\n",
            "  Downloading ffmpy-0.3.0.tar.gz (4.8 kB)\n",
            "  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "Collecting gradio-client>=0.2.7 (from gradio)\n",
            "  Downloading gradio_client-0.2.7-py3-none-any.whl (288 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m288.4/288.4 kB\u001b[0m \u001b[31m32.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting httpx (from gradio)\n",
            "  Downloading httpx-0.24.1-py3-none-any.whl (75 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.4/75.4 kB\u001b[0m \u001b[31m10.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting huggingface-hub>=0.14.0 (from gradio)\n",
            "  Downloading huggingface_hub-0.15.1-py3-none-any.whl (236 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m236.8/236.8 kB\u001b[0m \u001b[31m31.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.1.2)\n",
            "Requirement already satisfied: markdown-it-py[linkify]>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.0.0)\n",
            "Requirement already satisfied: markupsafe in /usr/local/lib/python3.10/dist-packages (from gradio) (2.1.3)\n",
            "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from gradio) (3.7.1)\n",
            "Collecting mdit-py-plugins<=0.3.3 (from gradio)\n",
            "  Downloading mdit_py_plugins-0.3.3-py3-none-any.whl (50 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.5/50.5 kB\u001b[0m \u001b[31m7.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from gradio) (1.22.4)\n",
            "Collecting orjson (from gradio)\n",
            "  Downloading orjson-3.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (136 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m137.0/137.0 kB\u001b[0m \u001b[31m17.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from gradio) (1.5.3)\n",
            "Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (from gradio) (8.4.0)\n",
            "Requirement already satisfied: pydantic in /usr/local/lib/python3.10/dist-packages (from gradio) (1.10.9)\n",
            "Collecting pydub (from gradio)\n",
            "  Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)\n",
            "Requirement already satisfied: pygments>=2.12.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (2.14.0)\n",
            "Collecting python-multipart (from gradio)\n",
            "  Downloading python_multipart-0.0.6-py3-none-any.whl (45 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.7/45.7 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from gradio) (6.0)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from gradio) (2.27.1)\n",
            "Collecting semantic-version (from gradio)\n",
            "  Downloading semantic_version-2.10.0-py2.py3-none-any.whl (15 kB)\n",
            "Collecting uvicorn>=0.14.0 (from gradio)\n",
            "  Downloading uvicorn-0.22.0-py3-none-any.whl (58 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting websockets>=10.0 (from gradio)\n",
            "  Downloading websockets-11.0.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (129 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m129.9/129.9 kB\u001b[0m \u001b[31m17.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: entrypoints in /usr/local/lib/python3.10/dist-packages (from altair>=4.2.0->gradio) (0.4)\n",
            "Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.10/dist-packages (from altair>=4.2.0->gradio) (4.3.3)\n",
            "Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packages (from altair>=4.2.0->gradio) (0.12.0)\n",
            "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from gradio-client>=0.2.7->gradio) (2023.6.0)\n",
            "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from gradio-client>=0.2.7->gradio) (23.1)\n",
            "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from gradio-client>=0.2.7->gradio) (4.6.3)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.14.0->gradio) (3.12.2)\n",
            "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.14.0->gradio) (4.65.0)\n",
            "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py[linkify]>=2.0.0->gradio) (0.1.2)\n",
            "Collecting linkify-it-py<3,>=1 (from markdown-it-py[linkify]>=2.0.0->gradio)\n",
            "  Downloading linkify_it_py-2.0.2-py3-none-any.whl (19 kB)\n",
            "INFO: pip is looking at multiple versions of mdit-py-plugins to determine which version is compatible with other requirements. This could take a while.\n",
            "Collecting mdit-py-plugins<=0.3.3 (from gradio)\n",
            "  Downloading mdit_py_plugins-0.3.2-py3-none-any.whl (50 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.4/50.4 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Downloading mdit_py_plugins-0.3.1-py3-none-any.whl (46 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.5/46.5 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Downloading mdit_py_plugins-0.3.0-py3-none-any.whl (43 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m43.7/43.7 kB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Downloading mdit_py_plugins-0.2.8-py3-none-any.whl (41 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.0/41.0 kB\u001b[0m \u001b[31m5.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Downloading mdit_py_plugins-0.2.7-py3-none-any.whl (41 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.0/41.0 kB\u001b[0m \u001b[31m5.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Downloading mdit_py_plugins-0.2.6-py3-none-any.whl (39 kB)\n",
            "  Downloading mdit_py_plugins-0.2.5-py3-none-any.whl (39 kB)\n",
            "INFO: pip is looking at multiple versions of mdit-py-plugins to determine which version is compatible with other requirements. This could take a while.\n",
            "  Downloading mdit_py_plugins-0.2.4-py3-none-any.whl (39 kB)\n",
            "  Downloading mdit_py_plugins-0.2.3-py3-none-any.whl (39 kB)\n",
            "  Downloading mdit_py_plugins-0.2.2-py3-none-any.whl (39 kB)\n",
            "  Downloading mdit_py_plugins-0.2.1-py3-none-any.whl (38 kB)\n",
            "  Downloading mdit_py_plugins-0.2.0-py3-none-any.whl (38 kB)\n",
            "INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C.\n",
            "  Downloading mdit_py_plugins-0.1.0-py3-none-any.whl (37 kB)\n",
            "Collecting markdown-it-py[linkify]>=2.0.0 (from gradio)\n",
            "  Downloading markdown_it_py-3.0.0-py3-none-any.whl (87 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m87.5/87.5 kB\u001b[0m \u001b[31m12.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Downloading markdown_it_py-2.2.0-py3-none-any.whl (84 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.5/84.5 kB\u001b[0m \u001b[31m12.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->gradio) (2.8.2)\n",
            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->gradio) (2022.7.1)\n",
            "Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.10/dist-packages (from uvicorn>=0.14.0->gradio) (8.1.3)\n",
            "Collecting h11>=0.8 (from uvicorn>=0.14.0->gradio)\n",
            "  Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m7.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (23.1.0)\n",
            "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (2.0.12)\n",
            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (6.0.4)\n",
            "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (4.0.2)\n",
            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (1.9.2)\n",
            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (1.3.3)\n",
            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (1.3.1)\n",
            "Collecting starlette<0.28.0,>=0.27.0 (from fastapi->gradio)\n",
            "  Downloading starlette-0.27.0-py3-none-any.whl (66 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.0/67.0 kB\u001b[0m \u001b[31m9.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (2023.5.7)\n",
            "Collecting httpcore<0.18.0,>=0.15.0 (from httpx->gradio)\n",
            "  Downloading httpcore-0.17.2-py3-none-any.whl (72 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m72.5/72.5 kB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (3.4)\n",
            "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (1.3.0)\n",
            "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gradio) (1.1.0)\n",
            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gradio) (0.11.0)\n",
            "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gradio) (4.40.0)\n",
            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gradio) (1.4.4)\n",
            "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gradio) (3.1.0)\n",
            "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->gradio) (1.26.16)\n",
            "Requirement already satisfied: anyio<5.0,>=3.0 in /usr/local/lib/python3.10/dist-packages (from httpcore<0.18.0,>=0.15.0->httpx->gradio) (3.7.0)\n",
            "Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair>=4.2.0->gradio) (0.19.3)\n",
            "Collecting uc-micro-py (from linkify-it-py<3,>=1->markdown-it-py[linkify]>=2.0.0->gradio)\n",
            "  Downloading uc_micro_py-1.0.2-py3-none-any.whl (6.2 kB)\n",
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->gradio) (1.16.0)\n",
            "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5.0,>=3.0->httpcore<0.18.0,>=0.15.0->httpx->gradio) (1.1.1)\n",
            "Building wheels for collected packages: ffmpy\n",
            "  Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for ffmpy: filename=ffmpy-0.3.0-py3-none-any.whl size=4694 sha256=37c8296251b0f6a8cf0a1c9c0470f09722c9b3b0153d4ece85681f5c343fe7ca\n",
            "  Stored in directory: /root/.cache/pip/wheels/0c/c2/0e/3b9c6845c6a4e35beb90910cc70d9ac9ab5d47402bd62af0df\n",
            "Successfully built ffmpy\n",
            "Installing collected packages: pydub, ffmpy, websockets, uc-micro-py, semantic-version, python-multipart, orjson, markdown-it-py, h11, aiofiles, uvicorn, starlette, mdit-py-plugins, linkify-it-py, huggingface-hub, httpcore, httpx, fastapi, gradio-client, gradio\n",
            "  Attempting uninstall: markdown-it-py\n",
            "    Found existing installation: markdown-it-py 3.0.0\n",
            "    Uninstalling markdown-it-py-3.0.0:\n",
            "      Successfully uninstalled markdown-it-py-3.0.0\n",
            "Successfully installed aiofiles-23.1.0 fastapi-0.98.0 ffmpy-0.3.0 gradio-3.35.2 gradio-client-0.2.7 h11-0.14.0 httpcore-0.17.2 httpx-0.24.1 huggingface-hub-0.15.1 linkify-it-py-2.0.2 markdown-it-py-2.2.0 mdit-py-plugins-0.3.3 orjson-3.9.1 pydub-0.25.1 python-multipart-0.0.6 semantic-version-2.10.0 starlette-0.27.0 uc-micro-py-1.0.2 uvicorn-0.22.0 websockets-11.0.3\n",
            "Collecting langchain\n",
            "  Downloading langchain-0.0.218-py3-none-any.whl (1.2 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m31.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting bitsandbytes\n",
            "  Downloading bitsandbytes-0.39.1-py3-none-any.whl (97.1 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m97.1/97.1 MB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: PyYAML>=5.4.1 in /usr/local/lib/python3.10/dist-packages (from langchain) (6.0)\n",
            "Requirement already satisfied: SQLAlchemy<3,>=1.4 in /usr/local/lib/python3.10/dist-packages (from langchain) (2.0.16)\n",
            "Requirement already satisfied: aiohttp<4.0.0,>=3.8.3 in /usr/local/lib/python3.10/dist-packages (from langchain) (3.8.4)\n",
            "Requirement already satisfied: async-timeout<5.0.0,>=4.0.0 in /usr/local/lib/python3.10/dist-packages (from langchain) (4.0.2)\n",
            "Collecting dataclasses-json<0.6.0,>=0.5.7 (from langchain)\n",
            "  Downloading dataclasses_json-0.5.8-py3-none-any.whl (26 kB)\n",
            "Collecting langchainplus-sdk>=0.0.17 (from langchain)\n",
            "  Downloading langchainplus_sdk-0.0.17-py3-none-any.whl (25 kB)\n",
            "Requirement already satisfied: numexpr<3.0.0,>=2.8.4 in /usr/local/lib/python3.10/dist-packages (from langchain) (2.8.4)\n",
            "Requirement already satisfied: numpy<2,>=1 in /usr/local/lib/python3.10/dist-packages (from langchain) (1.22.4)\n",
            "Collecting openapi-schema-pydantic<2.0,>=1.2 (from langchain)\n",
            "  Downloading openapi_schema_pydantic-1.2.4-py3-none-any.whl (90 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m90.0/90.0 kB\u001b[0m \u001b[31m11.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: pydantic<2,>=1 in /usr/local/lib/python3.10/dist-packages (from langchain) (1.10.9)\n",
            "Requirement already satisfied: requests<3,>=2 in /usr/local/lib/python3.10/dist-packages (from langchain) (2.27.1)\n",
            "Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /usr/local/lib/python3.10/dist-packages (from langchain) (8.2.2)\n",
            "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (23.1.0)\n",
            "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (2.0.12)\n",
            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (6.0.4)\n",
            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.9.2)\n",
            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.3.3)\n",
            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.3.1)\n",
            "Collecting marshmallow<4.0.0,>=3.3.0 (from dataclasses-json<0.6.0,>=0.5.7->langchain)\n",
            "  Downloading marshmallow-3.19.0-py3-none-any.whl (49 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.1/49.1 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting marshmallow-enum<2.0.0,>=1.5.1 (from dataclasses-json<0.6.0,>=0.5.7->langchain)\n",
            "  Downloading marshmallow_enum-1.5.1-py2.py3-none-any.whl (4.2 kB)\n",
            "Collecting typing-inspect>=0.4.0 (from dataclasses-json<0.6.0,>=0.5.7->langchain)\n",
            "  Downloading typing_inspect-0.9.0-py3-none-any.whl (8.8 kB)\n",
            "Requirement already satisfied: typing-extensions>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from pydantic<2,>=1->langchain) (4.6.3)\n",
            "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->langchain) (1.26.16)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->langchain) (2023.5.7)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->langchain) (3.4)\n",
            "Requirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.10/dist-packages (from SQLAlchemy<3,>=1.4->langchain) (2.0.2)\n",
            "Requirement already satisfied: packaging>=17.0 in /usr/local/lib/python3.10/dist-packages (from marshmallow<4.0.0,>=3.3.0->dataclasses-json<0.6.0,>=0.5.7->langchain) (23.1)\n",
            "Collecting mypy-extensions>=0.3.0 (from typing-inspect>=0.4.0->dataclasses-json<0.6.0,>=0.5.7->langchain)\n",
            "  Downloading mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB)\n",
            "Installing collected packages: bitsandbytes, mypy-extensions, marshmallow, typing-inspect, openapi-schema-pydantic, marshmallow-enum, langchainplus-sdk, dataclasses-json, langchain\n",
            "Successfully installed bitsandbytes-0.39.1 dataclasses-json-0.5.8 langchain-0.0.218 langchainplus-sdk-0.0.17 marshmallow-3.19.0 marshmallow-enum-1.5.1 mypy-extensions-1.0.0 openapi-schema-pydantic-1.2.4 typing-inspect-0.9.0\n",
            "Collecting faiss-cpu\n",
            "  Downloading faiss_cpu-1.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.6 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.6/17.6 MB\u001b[0m \u001b[31m62.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hInstalling collected packages: faiss-cpu\n",
            "Successfully installed faiss-cpu-1.7.4\n",
            "\u001b[31mERROR: Could not find a version that satisfies the requirement textwrap (from versions: none)\u001b[0m\u001b[31m\n",
            "\u001b[0m\u001b[31mERROR: No matching distribution found for textwrap\u001b[0m\u001b[31m\n",
            "\u001b[0mCollecting sentence-transformers\n",
            "  Downloading sentence-transformers-2.2.2.tar.gz (85 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.0/86.0 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "Collecting transformers<5.0.0,>=4.6.0 (from sentence-transformers)\n",
            "  Downloading transformers-4.30.2-py3-none-any.whl (7.2 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.2/7.2 MB\u001b[0m \u001b[31m57.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (4.65.0)\n",
            "Requirement already satisfied: torch>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (2.0.1+cu118)\n",
            "Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.15.2+cu118)\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.22.4)\n",
            "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.2.2)\n",
            "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.10.1)\n",
            "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (3.8.1)\n",
            "Collecting sentencepiece (from sentence-transformers)\n",
            "  Downloading sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m77.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: huggingface-hub>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.15.1)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (3.12.2)\n",
            "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (2023.6.0)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (2.27.1)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (6.0)\n",
            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (4.6.3)\n",
            "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (23.1)\n",
            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (1.11.1)\n",
            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (3.1)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (3.1.2)\n",
            "Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (2.0.0)\n",
            "Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.6.0->sentence-transformers) (3.25.2)\n",
            "Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.6.0->sentence-transformers) (16.0.6)\n",
            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers) (2022.10.31)\n",
            "Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers<5.0.0,>=4.6.0->sentence-transformers)\n",
            "  Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m78.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting safetensors>=0.3.1 (from transformers<5.0.0,>=4.6.0->sentence-transformers)\n",
            "  Downloading safetensors-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m61.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (8.1.3)\n",
            "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (1.2.0)\n",
            "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->sentence-transformers) (3.1.0)\n",
            "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision->sentence-transformers) (8.4.0)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.6.0->sentence-transformers) (2.1.3)\n",
            "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (1.26.16)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (2023.5.7)\n",
            "Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (2.0.12)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (3.4)\n",
            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.6.0->sentence-transformers) (1.3.0)\n",
            "Building wheels for collected packages: sentence-transformers\n",
            "  Building wheel for sentence-transformers (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for sentence-transformers: filename=sentence_transformers-2.2.2-py3-none-any.whl size=125926 sha256=8ac9b584f42597843ce222154270f2fe13d6ba19bdb343887f1c2a956f073a78\n",
            "  Stored in directory: /root/.cache/pip/wheels/62/f2/10/1e606fd5f02395388f74e7462910fe851042f97238cbbd902f\n",
            "Successfully built sentence-transformers\n",
            "Installing collected packages: tokenizers, sentencepiece, safetensors, transformers, sentence-transformers\n",
            "Successfully installed safetensors-0.3.1 sentence-transformers-2.2.2 sentencepiece-0.1.99 tokenizers-0.13.3 transformers-4.30.2\n",
            "Collecting accelerate\n",
            "  Downloading accelerate-0.20.3-py3-none-any.whl (227 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m227.6/227.6 kB\u001b[0m \u001b[31m12.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from accelerate) (1.22.4)\n",
            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from accelerate) (23.1)\n",
            "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate) (5.9.5)\n",
            "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate) (6.0)\n",
            "Requirement already satisfied: torch>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from accelerate) (2.0.1+cu118)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->accelerate) (3.12.2)\n",
            "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->accelerate) (4.6.3)\n",
            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->accelerate) (1.11.1)\n",
            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->accelerate) (3.1)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->accelerate) (3.1.2)\n",
            "Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->accelerate) (2.0.0)\n",
            "Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.6.0->accelerate) (3.25.2)\n",
            "Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.6.0->accelerate) (16.0.6)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.6.0->accelerate) (2.1.3)\n",
            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.6.0->accelerate) (1.3.0)\n",
            "Installing collected packages: accelerate\n",
            "Successfully installed accelerate-0.20.3\n",
            "Collecting llama-cpp-python\n",
            "  Downloading llama_cpp_python-0.1.66.tar.gz (1.5 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.5/1.5 MB\u001b[0m \u001b[31m41.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "Requirement already satisfied: typing-extensions>=4.5.0 in /usr/local/lib/python3.10/dist-packages (from llama-cpp-python) (4.6.3)\n",
            "Requirement already satisfied: numpy>=1.20.0 in /usr/local/lib/python3.10/dist-packages (from llama-cpp-python) (1.22.4)\n",
            "Collecting diskcache>=5.6.1 (from llama-cpp-python)\n",
            "  Downloading diskcache-5.6.1-py3-none-any.whl (45 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.6/45.6 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hBuilding wheels for collected packages: llama-cpp-python\n",
            "  Building wheel for llama-cpp-python (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for llama-cpp-python: filename=llama_cpp_python-0.1.66-cp310-cp310-linux_x86_64.whl size=265566 sha256=0ad80b78bd391d6e1f5bb2b9feeabc814bdfd95917bbf73c2b7bb7219a199dea\n",
            "  Stored in directory: /root/.cache/pip/wheels/9c/0e/e3/5c3b6fdb7a015cc1c18596fddf79d795b64347f18809c78fee\n",
            "Successfully built llama-cpp-python\n",
            "Installing collected packages: diskcache, llama-cpp-python\n",
            "Successfully installed diskcache-5.6.1 llama-cpp-python-0.1.66\n",
            "  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for transformers (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n"
          ]
        }
      ],
      "source": [
        "!pip install gradio\n",
        "!pip install langchain bitsandbytes\n",
        "!pip install faiss-cpu\n",
        "!pip install textwrap torch datasets loralib sentencepiece\n",
        "!pip install sentence-transformers\n",
        "!pip install accelerate\n",
        "!pip install llama-cpp-python\n",
        "!pip -q install git+https://github.com/huggingface/transformers"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "kzA0z-IWIDCW"
      },
      "outputs": [],
      "source": [
        "# !cd llama.cpp && pwd"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "GQU3WlKeHeEv"
      },
      "outputs": [],
      "source": [
        "# !git clone https://github.com/ggerganov/llama.cpp\n",
        "# !cd llama.cpp && make"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "OPowJEDgJjPc"
      },
      "outputs": [],
      "source": [
        "# !ls ./models"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "JuRpTwzFIHvY",
        "outputId": "d483850b-8c45-48a8-a89d-3ed54377d576"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Downloading...\n",
            "From: https://drive.google.com/uc?id=1oSCsACt5FrBLCD_T5FTzremT5y2b2KxK\n",
            "To: /content/index.faiss\n",
            "100% 121M/121M [00:04<00:00, 27.5MB/s]\n",
            "Downloading...\n",
            "From: https://drive.google.com/uc?id=1989gHL2kGm1sSLuVKk6ao8loGLvt8uR-\n",
            "To: /content/index.pkl\n",
            "100% 37.5M/37.5M [00:01<00:00, 29.2MB/s]\n"
          ]
        }
      ],
      "source": [
        "!gdown 1oSCsACt5FrBLCD_T5FTzremT5y2b2KxK\n",
        "!gdown 1989gHL2kGm1sSLuVKk6ao8loGLvt8uR-\n",
        "!mkdir nbdt_data\n",
        "!cp index.faiss nbdt_data\n",
        "!cp index.pkl nbdt_data"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 29,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000,
          "referenced_widgets": [
            "b427d9e2d2ee4f828ee896a03e9f38eb",
            "68db08a240724f9fb38f464db4c73b84",
            "7da5f39db40f465caea5dd36ce881237",
            "56796deef330429d9a9fec4432ca54d4",
            "435b61fe3135482587f1dcc65306e114",
            "d83e0c6ff5db4a29a05fed5b72773be7",
            "6885776cbe9449f8864676e1e83b4c19",
            "f32bc75b18d140aaba55de24947dbb3f",
            "7530c375556442249c0f19ea435a629f",
            "05a91c8da3054845bff97967fb17372d",
            "64906f3cba5c433baae65ecaf06612af"
          ]
        },
        "id": "4xhtkUdY7K6F",
        "outputId": "6223fbc0-3105-4e83-b71f-c15a7cad9f5b"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "WARNING:accelerate.utils.modeling:The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function.\n"
          ]
        },
        {
          "data": {
            "application/vnd.jupyter.widget-view+json": {
              "model_id": "b427d9e2d2ee4f828ee896a03e9f38eb",
              "version_major": 2,
              "version_minor": 0
            },
            "text/plain": [
              "Loading checkpoint shards:   0%|          | 0/14 [00:00<?, ?it/s]"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "WARNING:sentence_transformers.SentenceTransformer:No sentence-transformers model found with name /root/.cache/torch/sentence_transformers/biodatlab_MIReAD-Neuro-Large. Creating a new one with MEAN pooling.\n"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
            "Running on public URL: https://1ceb8c0439dfe6906c.gradio.live\n",
            "\n",
            "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
          ]
        },
        {
          "data": {
            "text/html": [
              "<div><iframe src=\"https://1ceb8c0439dfe6906c.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
            ],
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Keyboard interruption in main thread... closing server.\n"
          ]
        },
        {
          "data": {
            "text/html": [
              "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #800000; text-decoration-color: #800000\">╭─────────────────────────────── </span><span style=\"color: #800000; text-decoration-color: #800000; font-weight: bold\">Traceback </span><span style=\"color: #bf7f7f; text-decoration-color: #bf7f7f; font-weight: bold\">(most recent call last)</span><span style=\"color: #800000; text-decoration-color: #800000\"> ────────────────────────────────╮</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/usr/local/lib/python3.10/dist-packages/gradio/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">blocks.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">2058</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">block_thread</span>                    <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>                                                                                                  <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2055 </span><span style=\"color: #bfbfbf; text-decoration-color: #bfbfbf\">│   │   </span><span style=\"color: #808000; text-decoration-color: #808000\">\"\"\"Block main thread until interrupted by user.\"\"\"</span>                                <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2056 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">try</span>:                                                                              <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2057 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">while</span> <span style=\"color: #0000ff; text-decoration-color: #0000ff\">True</span>:                                                                   <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>2058 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   │   </span>time.sleep(<span style=\"color: #0000ff; text-decoration-color: #0000ff\">0.1</span>)                                                           <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2059 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">except</span> (<span style=\"color: #00ffff; text-decoration-color: #00ffff\">KeyboardInterrupt</span>, <span style=\"color: #00ffff; text-decoration-color: #00ffff\">OSError</span>):                                              <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2060 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">print</span>(<span style=\"color: #808000; text-decoration-color: #808000\">\"Keyboard interruption in main thread... closing server.\"</span>)              <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2061 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.server.close()                                                           <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">╰──────────────────────────────────────────────────────────────────────────────────────────────────╯</span>\n",
              "<span style=\"color: #ff0000; text-decoration-color: #ff0000; font-weight: bold\">KeyboardInterrupt</span>\n",
              "\n",
              "<span style=\"font-style: italic\">During handling of the above exception, another exception occurred:</span>\n",
              "\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">╭─────────────────────────────── </span><span style=\"color: #800000; text-decoration-color: #800000; font-weight: bold\">Traceback </span><span style=\"color: #bf7f7f; text-decoration-color: #bf7f7f; font-weight: bold\">(most recent call last)</span><span style=\"color: #800000; text-decoration-color: #800000\"> ────────────────────────────────╮</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">&lt;cell line: 236&gt;</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">236</span>                                                                          <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>                                                                                                  <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/usr/local/lib/python3.10/dist-packages/gradio/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">blocks.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">1970</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">launch</span>                          <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>                                                                                                  <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1967 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   </span>                                                                                  <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1968 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"># Block main thread if debug==True</span>                                                <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1969 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">if</span> debug <span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">or</span> <span style=\"color: #00ffff; text-decoration-color: #00ffff\">int</span>(os.getenv(<span style=\"color: #808000; text-decoration-color: #808000\">\"GRADIO_DEBUG\"</span>, <span style=\"color: #0000ff; text-decoration-color: #0000ff\">0</span>)) == <span style=\"color: #0000ff; text-decoration-color: #0000ff\">1</span>:                               <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>1970 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.block_thread()                                                           <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1971 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"># Block main thread if running in a script to stop script from exiting</span>            <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1972 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   </span>is_in_interactive_mode = <span style=\"color: #00ffff; text-decoration-color: #00ffff\">bool</span>(<span style=\"color: #00ffff; text-decoration-color: #00ffff\">getattr</span>(sys, <span style=\"color: #808000; text-decoration-color: #808000\">\"ps1\"</span>, sys.flags.interactive))         <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1973 </span>                                                                                          <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>                                                                                                  <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/usr/local/lib/python3.10/dist-packages/gradio/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">blocks.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">2061</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">block_thread</span>                    <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>                                                                                                  <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2058 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   │   </span>time.sleep(<span style=\"color: #0000ff; text-decoration-color: #0000ff\">0.1</span>)                                                           <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2059 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">except</span> (<span style=\"color: #00ffff; text-decoration-color: #00ffff\">KeyboardInterrupt</span>, <span style=\"color: #00ffff; text-decoration-color: #00ffff\">OSError</span>):                                              <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2060 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">print</span>(<span style=\"color: #808000; text-decoration-color: #808000\">\"Keyboard interruption in main thread... closing server.\"</span>)              <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>2061 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.server.close()                                                           <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2062 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">for</span> tunnel <span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">in</span> CURRENT_TUNNELS:                                                <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2063 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   │   </span>tunnel.kill()                                                             <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">2064 </span>                                                                                          <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>                                                                                                  <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/usr/local/lib/python3.10/dist-packages/gradio/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">networking.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">43</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">close</span>                         <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>                                                                                                  <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 40 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   </span>                                                                                       <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 41 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">def</span> <span style=\"color: #00ff00; text-decoration-color: #00ff00\">close</span>(<span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>):                                                                       <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 42 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.should_exit = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">True</span>                                                            <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span> 43 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.thread.join()                                                                 <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 44 </span>                                                                                           <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 45 </span>                                                                                           <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 46 </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">def</span> <span style=\"color: #00ff00; text-decoration-color: #00ff00\">get_first_available_port</span>(initial: <span style=\"color: #00ffff; text-decoration-color: #00ffff\">int</span>, final: <span style=\"color: #00ffff; text-decoration-color: #00ffff\">int</span>) -&gt; <span style=\"color: #00ffff; text-decoration-color: #00ffff\">int</span>:                             <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>                                                                                                  <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/usr/lib/python3.10/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">threading.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">1096</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">join</span>                                                    <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>                                                                                                  <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1093 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">raise</span> <span style=\"color: #00ffff; text-decoration-color: #00ffff\">RuntimeError</span>(<span style=\"color: #808000; text-decoration-color: #808000\">\"cannot join current thread\"</span>)                              <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1094 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   </span>                                                                                  <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1095 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">if</span> timeout <span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">is</span> <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span>:                                                               <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>1096 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>._wait_for_tstate_lock()                                                  <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1097 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">else</span>:                                                                             <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1098 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"># the behavior of a negative timeout isn't documented, but</span>                    <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1099 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"># historically .join(timeout=x) for x&lt;0 has acted as if timeout=0</span>             <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>                                                                                                  <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/usr/lib/python3.10/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">threading.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">1116</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">_wait_for_tstate_lock</span>                                   <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>                                                                                                  <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1113 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">return</span>                                                                        <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1114 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   </span>                                                                                  <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1115 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">try</span>:                                                                              <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>1116 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">if</span> lock.acquire(block, timeout):                                              <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1117 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   │   </span>lock.release()                                                            <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1118 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   │   │   </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>._stop()                                                              <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">│</span>   <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">1119 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│   │   </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">except</span>:                                                                           <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
              "<span style=\"color: #800000; text-decoration-color: #800000\">╰──────────────────────────────────────────────────────────────────────────────────────────────────╯</span>\n",
              "<span style=\"color: #ff0000; text-decoration-color: #ff0000; font-weight: bold\">KeyboardInterrupt</span>\n",
              "</pre>\n"
            ],
            "text/plain": [
              "\u001b[31m╭─\u001b[0m\u001b[31m──────────────────────────────\u001b[0m\u001b[31m \u001b[0m\u001b[1;31mTraceback \u001b[0m\u001b[1;2;31m(most recent call last)\u001b[0m\u001b[31m \u001b[0m\u001b[31m───────────────────────────────\u001b[0m\u001b[31m─╮\u001b[0m\n",
              "\u001b[31m│\u001b[0m \u001b[2;33m/usr/local/lib/python3.10/dist-packages/gradio/\u001b[0m\u001b[1;33mblocks.py\u001b[0m:\u001b[94m2058\u001b[0m in \u001b[92mblock_thread\u001b[0m                    \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m                                                                                                  \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m2055 \u001b[0m\u001b[2;90m│   │   \u001b[0m\u001b[33m\"\"\"Block main thread until interrupted by user.\"\"\"\u001b[0m                                \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m2056 \u001b[0m\u001b[2m│   │   \u001b[0m\u001b[94mtry\u001b[0m:                                                                              \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m2057 \u001b[0m\u001b[2m│   │   │   \u001b[0m\u001b[94mwhile\u001b[0m \u001b[94mTrue\u001b[0m:                                                                   \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m2058 \u001b[2m│   │   │   │   \u001b[0mtime.sleep(\u001b[94m0.1\u001b[0m)                                                           \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m2059 \u001b[0m\u001b[2m│   │   \u001b[0m\u001b[94mexcept\u001b[0m (\u001b[96mKeyboardInterrupt\u001b[0m, \u001b[96mOSError\u001b[0m):                                              \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m2060 \u001b[0m\u001b[2m│   │   │   \u001b[0m\u001b[96mprint\u001b[0m(\u001b[33m\"\u001b[0m\u001b[33mKeyboard interruption in main thread... closing server.\u001b[0m\u001b[33m\"\u001b[0m)              \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m2061 \u001b[0m\u001b[2m│   │   │   \u001b[0m\u001b[96mself\u001b[0m.server.close()                                                           \u001b[31m│\u001b[0m\n",
              "\u001b[31m╰──────────────────────────────────────────────────────────────────────────────────────────────────╯\u001b[0m\n",
              "\u001b[1;91mKeyboardInterrupt\u001b[0m\n",
              "\n",
              "\u001b[3mDuring handling of the above exception, another exception occurred:\u001b[0m\n",
              "\n",
              "\u001b[31m╭─\u001b[0m\u001b[31m──────────────────────────────\u001b[0m\u001b[31m \u001b[0m\u001b[1;31mTraceback \u001b[0m\u001b[1;2;31m(most recent call last)\u001b[0m\u001b[31m \u001b[0m\u001b[31m───────────────────────────────\u001b[0m\u001b[31m─╮\u001b[0m\n",
              "\u001b[31m│\u001b[0m in \u001b[92m<cell line: 236>\u001b[0m:\u001b[94m236\u001b[0m                                                                          \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m                                                                                                  \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m \u001b[2;33m/usr/local/lib/python3.10/dist-packages/gradio/\u001b[0m\u001b[1;33mblocks.py\u001b[0m:\u001b[94m1970\u001b[0m in \u001b[92mlaunch\u001b[0m                          \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m                                                                                                  \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1967 \u001b[0m\u001b[2m│   │   \u001b[0m                                                                                  \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1968 \u001b[0m\u001b[2m│   │   \u001b[0m\u001b[2m# Block main thread if debug==True\u001b[0m                                                \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1969 \u001b[0m\u001b[2m│   │   \u001b[0m\u001b[94mif\u001b[0m debug \u001b[95mor\u001b[0m \u001b[96mint\u001b[0m(os.getenv(\u001b[33m\"\u001b[0m\u001b[33mGRADIO_DEBUG\u001b[0m\u001b[33m\"\u001b[0m, \u001b[94m0\u001b[0m)) == \u001b[94m1\u001b[0m:                               \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m1970 \u001b[2m│   │   │   \u001b[0m\u001b[96mself\u001b[0m.block_thread()                                                           \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1971 \u001b[0m\u001b[2m│   │   \u001b[0m\u001b[2m# Block main thread if running in a script to stop script from exiting\u001b[0m            \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1972 \u001b[0m\u001b[2m│   │   \u001b[0mis_in_interactive_mode = \u001b[96mbool\u001b[0m(\u001b[96mgetattr\u001b[0m(sys, \u001b[33m\"\u001b[0m\u001b[33mps1\u001b[0m\u001b[33m\"\u001b[0m, sys.flags.interactive))         \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1973 \u001b[0m                                                                                          \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m                                                                                                  \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m \u001b[2;33m/usr/local/lib/python3.10/dist-packages/gradio/\u001b[0m\u001b[1;33mblocks.py\u001b[0m:\u001b[94m2061\u001b[0m in \u001b[92mblock_thread\u001b[0m                    \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m                                                                                                  \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m2058 \u001b[0m\u001b[2m│   │   │   │   \u001b[0mtime.sleep(\u001b[94m0.1\u001b[0m)                                                           \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m2059 \u001b[0m\u001b[2m│   │   \u001b[0m\u001b[94mexcept\u001b[0m (\u001b[96mKeyboardInterrupt\u001b[0m, \u001b[96mOSError\u001b[0m):                                              \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m2060 \u001b[0m\u001b[2m│   │   │   \u001b[0m\u001b[96mprint\u001b[0m(\u001b[33m\"\u001b[0m\u001b[33mKeyboard interruption in main thread... closing server.\u001b[0m\u001b[33m\"\u001b[0m)              \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m2061 \u001b[2m│   │   │   \u001b[0m\u001b[96mself\u001b[0m.server.close()                                                           \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m2062 \u001b[0m\u001b[2m│   │   │   \u001b[0m\u001b[94mfor\u001b[0m tunnel \u001b[95min\u001b[0m CURRENT_TUNNELS:                                                \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m2063 \u001b[0m\u001b[2m│   │   │   │   \u001b[0mtunnel.kill()                                                             \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m2064 \u001b[0m                                                                                          \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m                                                                                                  \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m \u001b[2;33m/usr/local/lib/python3.10/dist-packages/gradio/\u001b[0m\u001b[1;33mnetworking.py\u001b[0m:\u001b[94m43\u001b[0m in \u001b[92mclose\u001b[0m                         \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m                                                                                                  \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m 40 \u001b[0m\u001b[2m│   \u001b[0m                                                                                       \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m 41 \u001b[0m\u001b[2m│   \u001b[0m\u001b[94mdef\u001b[0m \u001b[92mclose\u001b[0m(\u001b[96mself\u001b[0m):                                                                       \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m 42 \u001b[0m\u001b[2m│   │   \u001b[0m\u001b[96mself\u001b[0m.should_exit = \u001b[94mTrue\u001b[0m                                                            \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m 43 \u001b[2m│   │   \u001b[0m\u001b[96mself\u001b[0m.thread.join()                                                                 \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m 44 \u001b[0m                                                                                           \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m 45 \u001b[0m                                                                                           \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m 46 \u001b[0m\u001b[94mdef\u001b[0m \u001b[92mget_first_available_port\u001b[0m(initial: \u001b[96mint\u001b[0m, final: \u001b[96mint\u001b[0m) -> \u001b[96mint\u001b[0m:                             \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m                                                                                                  \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m \u001b[2;33m/usr/lib/python3.10/\u001b[0m\u001b[1;33mthreading.py\u001b[0m:\u001b[94m1096\u001b[0m in \u001b[92mjoin\u001b[0m                                                    \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m                                                                                                  \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1093 \u001b[0m\u001b[2m│   │   │   \u001b[0m\u001b[94mraise\u001b[0m \u001b[96mRuntimeError\u001b[0m(\u001b[33m\"\u001b[0m\u001b[33mcannot join current thread\u001b[0m\u001b[33m\"\u001b[0m)                              \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1094 \u001b[0m\u001b[2m│   │   \u001b[0m                                                                                  \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1095 \u001b[0m\u001b[2m│   │   \u001b[0m\u001b[94mif\u001b[0m timeout \u001b[95mis\u001b[0m \u001b[94mNone\u001b[0m:                                                               \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m1096 \u001b[2m│   │   │   \u001b[0m\u001b[96mself\u001b[0m._wait_for_tstate_lock()                                                  \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1097 \u001b[0m\u001b[2m│   │   \u001b[0m\u001b[94melse\u001b[0m:                                                                             \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1098 \u001b[0m\u001b[2m│   │   │   \u001b[0m\u001b[2m# the behavior of a negative timeout isn't documented, but\u001b[0m                    \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1099 \u001b[0m\u001b[2m│   │   │   \u001b[0m\u001b[2m# historically .join(timeout=x) for x<0 has acted as if timeout=0\u001b[0m             \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m                                                                                                  \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m \u001b[2;33m/usr/lib/python3.10/\u001b[0m\u001b[1;33mthreading.py\u001b[0m:\u001b[94m1116\u001b[0m in \u001b[92m_wait_for_tstate_lock\u001b[0m                                   \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m                                                                                                  \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1113 \u001b[0m\u001b[2m│   │   │   \u001b[0m\u001b[94mreturn\u001b[0m                                                                        \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1114 \u001b[0m\u001b[2m│   │   \u001b[0m                                                                                  \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1115 \u001b[0m\u001b[2m│   │   \u001b[0m\u001b[94mtry\u001b[0m:                                                                              \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m1116 \u001b[2m│   │   │   \u001b[0m\u001b[94mif\u001b[0m lock.acquire(block, timeout):                                              \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1117 \u001b[0m\u001b[2m│   │   │   │   \u001b[0mlock.release()                                                            \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1118 \u001b[0m\u001b[2m│   │   │   │   \u001b[0m\u001b[96mself\u001b[0m._stop()                                                              \u001b[31m│\u001b[0m\n",
              "\u001b[31m│\u001b[0m   \u001b[2m1119 \u001b[0m\u001b[2m│   │   \u001b[0m\u001b[94mexcept\u001b[0m:                                                                           \u001b[31m│\u001b[0m\n",
              "\u001b[31m╰──────────────────────────────────────────────────────────────────────────────────────────────────╯\u001b[0m\n",
              "\u001b[1;91mKeyboardInterrupt\u001b[0m\n"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        }
      ],
      "source": [
        "import gradio as gr\n",
        "from langchain.vectorstores import FAISS\n",
        "from langchain.embeddings import HuggingFaceEmbeddings\n",
        "from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig, pipeline\n",
        "from transformers import BitsAndBytesConfig\n",
        "import textwrap\n",
        "import torch\n",
        "\n",
        "quant_config = BitsAndBytesConfig(load_in_4bit=True,\n",
        "                                         bnb_4bit_compute_dtype=torch.bfloat16,\n",
        "                                         bnb_4bit_use_double_quant=True,\n",
        "                                         )\n",
        "\n",
        "prompt = 'BEGINNING OF CONVERSATION: USER: \\\n",
        "I will provide you with two abstracts, I intend to use the author of the second to review the first. Tell me in 15 words why or why not the second author is a good fit to review the first paper.\\n\\\n",
        "Abstract To Be Reviewed: '\n",
        "\n",
        "tokenizer = LlamaTokenizer.from_pretrained(\"samwit/koala-7b\")\n",
        "\n",
        "base_model = LlamaForCausalLM.from_pretrained(\n",
        "    \"samwit/koala-7b\",\n",
        "    load_in_8bit=False,\n",
        "    load_in_4bit=True,\n",
        "    device_map='auto',\n",
        "    offload_folder='offloaded',\n",
        "    quantization_config=quant_config\n",
        ")\n",
        "\n",
        "pipe = pipeline(\n",
        "    \"text-generation\",\n",
        "    model=base_model,\n",
        "    tokenizer=tokenizer,\n",
        "    max_length=1024,\n",
        "    temperature=0.7,\n",
        "    top_p=0.95,\n",
        "    repetition_penalty=1.15,\n",
        "    # device=-1\n",
        ")\n",
        "\n",
        "\n",
        "def wrap_text_preserve_newlines(text, width=110):\n",
        "    # Split the input text into lines based on newline characters\n",
        "    lines = text.split('\\n')\n",
        "    # Wrap each line individually\n",
        "    wrapped_lines = [textwrap.fill(line, width=width) for line in lines]\n",
        "    # Join the wrapped lines back together using newline characters\n",
        "    wrapped_text = '\\n'.join(wrapped_lines)\n",
        "    return wrapped_text\n",
        "\n",
        "\n",
        "def create_miread_embed(sents, bundle):\n",
        "    tokenizer = bundle[0]\n",
        "    model = bundle[1]\n",
        "    model.cpu()\n",
        "    tokens = tokenizer(sents,\n",
        "                       max_length=512,\n",
        "                       padding=True,\n",
        "                       truncation=True,\n",
        "                       return_tensors=\"pt\"\n",
        "                       )\n",
        "    device = torch.device('cpu')\n",
        "    tokens = tokens.to(device)\n",
        "    with torch.no_grad():\n",
        "        out = model.bert(**tokens)\n",
        "        feature = out.last_hidden_state[:, 0, :]\n",
        "    return feature.cpu()\n",
        "\n",
        "\n",
        "def get_matches(query, k):\n",
        "    matches = vecdb.similarity_search_with_score(query, k=k)\n",
        "    return matches\n",
        "\n",
        "\n",
        "def inference(query,k=30,mode=''):\n",
        "    matches = get_matches(query,k)\n",
        "    j_bucket = {}\n",
        "    n_table = []\n",
        "    a_table = []\n",
        "    r_table = []\n",
        "    scores = [round(match[1].item(),3) for match in matches]\n",
        "    min_score = min(scores)\n",
        "    max_score = max(scores)\n",
        "    normaliser = lambda x: round(1 - (x-min_score)/max_score,3)\n",
        "    for i,match in enumerate(matches):\n",
        "        doc = match[0]\n",
        "        score = normaliser(round(match[1].item(),3))\n",
        "        title = doc.metadata['title']\n",
        "        author = doc.metadata['authors'][0]\n",
        "        date = doc.metadata.get('date','None')\n",
        "        link = doc.metadata.get('link','None')\n",
        "        submitter = doc.metadata.get('submitter','None')\n",
        "        journal = doc.metadata.get('journal','None')\n",
        "        abstract = doc.metadata.get('abstract','')\n",
        "\n",
        "        # For journals\n",
        "        if journal not in j_bucket:\n",
        "            j_bucket[journal] = score\n",
        "        else:\n",
        "            j_bucket[journal] += score\n",
        "\n",
        "        # For authors\n",
        "        record = [i+1,\n",
        "                  score,\n",
        "                  author,\n",
        "                  title,\n",
        "                  link,\n",
        "                  date]\n",
        "        n_table.append(record)\n",
        "\n",
        "        # For abstracts\n",
        "        record = [i+1,\n",
        "                  title,\n",
        "                  author,\n",
        "                  submitter,\n",
        "                  journal,\n",
        "                  date,\n",
        "                  link,\n",
        "                  score\n",
        "        ]\n",
        "        a_table.append(record)\n",
        "\n",
        "        # For reviewer\n",
        "        r_record = [i+1,\n",
        "                    score,\n",
        "                    author,\n",
        "                    abstract,\n",
        "                    title,\n",
        "                    link,\n",
        "                    date]\n",
        "        r_table.append(r_record)\n",
        "\n",
        "\n",
        "\n",
        "    if (mode):\n",
        "      dataset = [prompt + query + '\\n Candidate Abstract: ' + row[3] + '\\n GPT:' for row in r_table[:5]]\n",
        "      outputs = pipe(dataset)\n",
        "      outputs = [output[0]['generated_text'].split('GPT:')[1] for output in outputs]\n",
        "      r_table = [[r[0],r[1],r[2],outputs[i],r[4],r[5],r[6]] for i,r in enumerate(r_table[:5])]\n",
        "      # print(f\"{i}/5 done\")\n",
        "    else:\n",
        "      outputs = ['']*5\n",
        "      r_table = [[r[0],r[1],r[2],outputs[i],r[4],r[5],r[6]] for i,r in enumerate(r_table[:5])]\n",
        "\n",
        "    j_table = sorted([[journal,score] for journal,score in j_bucket.items()],key= lambda x : x[1],reverse=True)\n",
        "    j_table = [[i+1,item[0],item[1]] for i,item in enumerate(j_table)]\n",
        "    j_output= gr.Dataframe.update(value=j_table,visible=True)\n",
        "    n_output= gr.Dataframe.update(value=n_table,visible=True)\n",
        "    a_output = gr.Dataframe.update(value=a_table,visible=True)\n",
        "    if mode:\n",
        "      r_output = gr.Dataframe.update(value=r_table,visible=True)\n",
        "      return r_output\n",
        "\n",
        "    return [a_output,j_output,n_output]\n",
        "\n",
        "def k_inference(query,k):\n",
        "  return inference(query,k,'koala')\n",
        "\n",
        "model_name = \"biodatlab/MIReAD-Neuro-Large\"\n",
        "model_kwargs = {'device': 'cpu'}\n",
        "encode_kwargs = {'normalize_embeddings': False}\n",
        "faiss_embedder = HuggingFaceEmbeddings(\n",
        "    model_name=model_name,\n",
        "    model_kwargs=model_kwargs,\n",
        "    encode_kwargs=encode_kwargs\n",
        ")\n",
        "\n",
        "vecdb = FAISS.load_local(\"nbdt_data\", faiss_embedder)\n",
        "\n",
        "\n",
        "with gr.Blocks(theme=gr.themes.Soft()) as demo:\n",
        "    gr.Markdown(\"# NBDT Recommendation Engine for Editors\")\n",
        "    gr.Markdown(\"NBDT Recommendation Engine for Editors is a tool for neuroscience authors/abstracts/journalsrecommendation built for NBDT journal editors. \\\n",
        "    It aims to help an editor to find similar reviewers, abstracts, and journals to a given submitted abstract.\\\n",
        "    To find a recommendation, paste a `title[SEP]abstract` or `abstract` in the text box below and click \\\"Find Matches\\\".\\\n",
        "    Then, you can hover to authors/abstracts/journals tab to find a suggested list.\\\n",
        "    The data in our current demo is selected from 2018 to 2022. We will update the data monthly for an up-to-date publications.\")\n",
        "\n",
        "\n",
        "    abst = gr.Textbox(label=\"Abstract\",lines=10)\n",
        "\n",
        "    k = gr.Slider(1,100,step=1,value=50,label=\"Number of matches to consider\")\n",
        "\n",
        "    action_btn = gr.Button(value=\"Find Matches\")\n",
        "\n",
        "    with gr.Tab(\"Authors\"):\n",
        "        n_output = gr.Dataframe(\n",
        "            headers=['No.','Score','Name','Title','Link','Date'],\n",
        "            datatype=['number','number','str','str','str','str'],\n",
        "            col_count=(6, \"fixed\"),\n",
        "            wrap=True,\n",
        "            visible=False\n",
        "        )\n",
        "    with gr.Tab(\"Abstracts\"):\n",
        "        a_output = gr.Dataframe(\n",
        "            headers=['No.','Title','Author','Corresponding Author','Journal','Date','Link','Score'],\n",
        "            datatype=['number','str','str','str','str','str','str','number'],\n",
        "            col_count=(8,\"fixed\"),\n",
        "            wrap=True,\n",
        "            visible=False\n",
        "        )\n",
        "    with gr.Tab(\"Journals\"):\n",
        "        j_output = gr.Dataframe(\n",
        "            headers=['No.','Name','Score'],\n",
        "            datatype=['number','str','number'],\n",
        "            col_count=(3, \"fixed\"),\n",
        "            wrap=True,\n",
        "            visible=False\n",
        "        )\n",
        "\n",
        "    llm_btn = gr.Button(value=\"Listen to Koala's advice\")\n",
        "    with gr.Tab(\"Reviewers (New)\"):\n",
        "      r_output = gr.Dataframe(\n",
        "          headers=['No.','Score','Name','Title','Reasoning','Link','Date'],\n",
        "          datatype=['number','number','str','str','str','str','str'],\n",
        "          col_count=(7,\"fixed\"),\n",
        "          wrap=True,\n",
        "          visible=True\n",
        "      )\n",
        "\n",
        "    action_btn.click(fn=inference,\n",
        "                     inputs=[\n",
        "                            abst,\n",
        "                            k,\n",
        "                            # modes,\n",
        "                            ],\n",
        "                     outputs=[a_output,j_output,n_output],\n",
        "                     api_name=\"neurojane\")\n",
        "    llm_btn.click(fn=k_inference,\n",
        "                  inputs=[\n",
        "                      abst,\n",
        "                      k,\n",
        "                  ],\n",
        "                  outputs = [r_output],\n",
        "                  api_name=\"koala\")\n",
        "\n",
        "demo.launch(debug=True,share=True)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 30,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "UQhTTPJGBdwo",
        "outputId": "93a00886-db64-4b6a-88b5-51f2d88c58e5"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "{'max_rows': None,\n",
              " 'max_cols': None,\n",
              " 'label': None,\n",
              " 'show_label': None,\n",
              " 'scale': None,\n",
              " 'min_width': None,\n",
              " 'interactive': None,\n",
              " 'visible': True,\n",
              " 'value': [[1,\n",
              "   1.0,\n",
              "   'philipp berens',\n",
              "   \" Both authors have expertise in neuroscience and machine learning, making them suitable candidates to review each other's work. The first author's research focuses on understanding the mechanisms underlying learning and plasticity, while the second author's work involves developing new algorithms for spike inference from calcium signals. These areas of expertise complement each other, as the first author's insights into the nature of plasticity can inform the development of more effective spike inference algorithms.\",\n",
              "   'Supervised learning sets benchmark for robust spike detection from calcium imaging signals',\n",
              "   'https://www.semanticscholar.org/paper/786f9831900ca34d8200291e5a72d2f14ad9b336',\n",
              "   2015],\n",
              "  [2,\n",
              "   0.974,\n",
              "   'daniel butts',\n",
              "   \" Both authors have expertise in neuroscience and machine learning, making them suitable candidates to review each other's work. The first author's research focuses on understanding the mechanisms underlying learning and plasticity, while the second author's work uses information theory to analyze neural ensembles. While both authors may have different perspectives and approaches, they share a common goal of advancing our understanding of the brain and its functions.\",\n",
              "   'Information Theoretic Measure of Stimulus Significance is Not Confounded by Stimulus Correlations or Non-Linearities',\n",
              "   'https://www.semanticscholar.org/paper/f6767047e84872f4cb09f94c26b1d21e3ef9d55d',\n",
              "   2002],\n",
              "  [3,\n",
              "   0.952,\n",
              "   'alex williams',\n",
              "   ' The candidate abstract provides a novel approach to understanding neural sequence data using a point process model that captures both the timing and occurrence of neural activity. This approach addresses some of the limitations of previous methods, including the need for spike times to be discretized and the use of a sub-optimal least-squares criterion. Additionally, the proposed method allows for the incorporation of learned time warping parameters, which have been shown to be effective in modeling variable sequence lengths. Overall, this approach has potential applications in understanding various aspects of neural processing, including working memory, motor production, and learning.',\n",
              "   'Point process models for sequence detection in high-dimensional neural spike trains',\n",
              "   'https://www.semanticscholar.org/paper/2942ed449bc35f06170342b61ebb6fc2dd6183c9',\n",
              "   2020],\n",
              "  [4,\n",
              "   0.931,\n",
              "   'philipp berens',\n",
              "   \" Both authors have expertise in neuroscience and machine learning, making them suitable candidates to review each other's work. The first author's research focuses on understanding the mechanisms underlying learning and plasticity, while the second author's work involves developing new algorithms for spike rate inference in calcium imaging studies.\",\n",
              "   'Supervised learning sets benchmark for robust spike rate inference from calcium imaging signals',\n",
              "   'https://www.semanticscholar.org/paper/ff3c6755a17026d234978095dcc36a43b551ac89',\n",
              "   2015],\n",
              "  [5,\n",
              "   0.924,\n",
              "   'konrad kording',\n",
              "   \" Both authors have expertise in the field of artificial intelligence and machine learning, specifically in the area of deep learning. They also have experience in theoretical neuroscience and cognitive psychology. However, the candidate's research focuses more specifically on the topic of perceptual processing and the use of adversarial algorithms as a potential mechanism for learning in the brain. On the other hand, the author of the original abstract reviews the existing literature on plasticity-related mechanisms and argues that gradients are a key concept for understanding the process of neuronal plasticity. While both authors have valuable insights into the topic, it may be beneficial to consult with experts in both fields to gain a comprehensive understanding of the subject matter.\",\n",
              "   'Learning to infer in recurrent biological networks',\n",
              "   'https://www.semanticscholar.org/paper/482085ff18eaefb262b8217797e99a2cca339938',\n",
              "   2020]],\n",
              " '__type__': 'update'}"
            ]
          },
          "execution_count": 30,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "k_inference('The experimental study of learning and plasticity has always been driven by an implicit question: how can physiological changes be adaptive and improve performance? For example, in Hebbian plasticity only synapses from presynaptic neurons that were active are changed, avoiding useless changes. Similarly, in dopamine-gated learning synapse changes depend on reward or lack thereof and do not change when everything is predictable. Within machine learning we can make the question of which changes are adaptive concrete: performance improves when changes correlate with the gradient of an objective function quantifying performance. This result is general for any system that improves through small changes. As such, physiology has always implicitly been seeking mechanisms that allow the brain to approximate gradients. Coming from this perspective we review the existing literature on plasticity-related mechanisms, and we show how these mechanisms relate to gradient estimation. We argue that gradients are a unifying idea to explain the many facets of neuronal plasticity.',k=10)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Nxi4msI_aIl2"
      },
      "outputs": [],
      "source": []
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    },
    "widgets": {
      "application/vnd.jupyter.widget-state+json": {
        "05a91c8da3054845bff97967fb17372d": {
          "model_module": "@jupyter-widgets/base",
          "model_module_version": "1.2.0",
          "model_name": "LayoutModel",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
        "435b61fe3135482587f1dcc65306e114": {
          "model_module": "@jupyter-widgets/base",
          "model_module_version": "1.2.0",
          "model_name": "LayoutModel",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
        "56796deef330429d9a9fec4432ca54d4": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "HTMLModel",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "HTMLModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "HTMLView",
            "description": "",
            "description_tooltip": null,
            "layout": "IPY_MODEL_05a91c8da3054845bff97967fb17372d",
            "placeholder": "​",
            "style": "IPY_MODEL_64906f3cba5c433baae65ecaf06612af",
            "value": " 14/14 [02:48&lt;00:00, 11.14s/it]"
          }
        },
        "64906f3cba5c433baae65ecaf06612af": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "DescriptionStyleModel",
          "state": {
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "DescriptionStyleModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "StyleView",
            "description_width": ""
          }
        },
        "6885776cbe9449f8864676e1e83b4c19": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "DescriptionStyleModel",
          "state": {
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "DescriptionStyleModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "StyleView",
            "description_width": ""
          }
        },
        "68db08a240724f9fb38f464db4c73b84": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "HTMLModel",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "HTMLModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "HTMLView",
            "description": "",
            "description_tooltip": null,
            "layout": "IPY_MODEL_d83e0c6ff5db4a29a05fed5b72773be7",
            "placeholder": "​",
            "style": "IPY_MODEL_6885776cbe9449f8864676e1e83b4c19",
            "value": "Loading checkpoint shards: 100%"
          }
        },
        "7530c375556442249c0f19ea435a629f": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "ProgressStyleModel",
          "state": {
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "ProgressStyleModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "StyleView",
            "bar_color": null,
            "description_width": ""
          }
        },
        "7da5f39db40f465caea5dd36ce881237": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "FloatProgressModel",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "FloatProgressModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "ProgressView",
            "bar_style": "success",
            "description": "",
            "description_tooltip": null,
            "layout": "IPY_MODEL_f32bc75b18d140aaba55de24947dbb3f",
            "max": 14,
            "min": 0,
            "orientation": "horizontal",
            "style": "IPY_MODEL_7530c375556442249c0f19ea435a629f",
            "value": 14
          }
        },
        "b427d9e2d2ee4f828ee896a03e9f38eb": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "HBoxModel",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "HBoxModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "HBoxView",
            "box_style": "",
            "children": [
              "IPY_MODEL_68db08a240724f9fb38f464db4c73b84",
              "IPY_MODEL_7da5f39db40f465caea5dd36ce881237",
              "IPY_MODEL_56796deef330429d9a9fec4432ca54d4"
            ],
            "layout": "IPY_MODEL_435b61fe3135482587f1dcc65306e114"
          }
        },
        "d83e0c6ff5db4a29a05fed5b72773be7": {
          "model_module": "@jupyter-widgets/base",
          "model_module_version": "1.2.0",
          "model_name": "LayoutModel",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
        "f32bc75b18d140aaba55de24947dbb3f": {
          "model_module": "@jupyter-widgets/base",
          "model_module_version": "1.2.0",
          "model_name": "LayoutModel",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        }
      }
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}