from typing import Any, Dict from functools import lru_cache import threading import cv2 import numpy import onnxruntime from tqdm import tqdm import facefusion.globals from facefusion import wording from facefusion.typing import Frame, ModelValue from facefusion.vision import get_video_frame, count_video_frame_total, read_image, detect_fps from facefusion.utilities import resolve_relative_path, conditional_download CONTENT_ANALYSER = None THREAD_LOCK : threading.Lock = threading.Lock() MODELS : Dict[str, ModelValue] =\ { 'open_nsfw': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/open_nsfw.onnx', 'path': resolve_relative_path('../.assets/models/open_nsfw.onnx') } } MAX_PROBABILITY = 0.80 MAX_RATE = 5 STREAM_COUNTER = 0 def get_content_analyser() -> Any: global CONTENT_ANALYSER with THREAD_LOCK: if CONTENT_ANALYSER is None: model_path = MODELS.get('open_nsfw').get('path') CONTENT_ANALYSER = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers) return CONTENT_ANALYSER def clear_content_analyser() -> None: global CONTENT_ANALYSER CONTENT_ANALYSER = None def pre_check() -> bool: if not facefusion.globals.skip_download: download_directory_path = resolve_relative_path('../.assets/models') model_url = MODELS.get('open_nsfw').get('url') conditional_download(download_directory_path, [ model_url ]) return True def analyse_stream(frame : Frame, fps : float) -> bool: global STREAM_COUNTER STREAM_COUNTER = STREAM_COUNTER + 1 if STREAM_COUNTER % int(fps) == 0: return analyse_frame(frame) return False def prepare_frame(frame : Frame) -> Frame: frame = cv2.resize(frame, (224, 224)).astype(numpy.float32) frame -= numpy.array([ 104, 117, 123 ]).astype(numpy.float32) frame = numpy.expand_dims(frame, axis = 0) return frame def analyse_frame(frame : Frame) -> bool: content_analyser = get_content_analyser() frame = prepare_frame(frame) probability = content_analyser.run(None, { 'input:0': frame })[0][0][1] return False# probability > MAX_PROBABILITY @lru_cache(maxsize = None) def analyse_image(image_path : str) -> bool: frame = read_image(image_path) return analyse_frame(frame) @lru_cache(maxsize = None) def analyse_video(video_path : str, start_frame : int, end_frame : int) -> bool: video_frame_total = count_video_frame_total(video_path) fps = detect_fps(video_path) frame_range = range(start_frame or 0, end_frame or video_frame_total) rate = 0.0 counter = 0 with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =') as progress: for frame_number in frame_range: if frame_number % int(fps) == 0: frame = get_video_frame(video_path, frame_number) if analyse_frame(frame): counter += 1 rate = counter * int(fps) / len(frame_range) * 100 progress.update() progress.set_postfix(rate = rate) return rate > MAX_RATE