import math import torch from modules.postprocess.realesrgan_model_arch import RealESRGANer # DML Solution: Some of contents of output tensor turn to 0 after Extended Slices. Move it to cpu. def tile_process(self): batch, channel, height, width = self.img.shape output_height = height * self.scale output_width = width * self.scale output_shape = (batch, channel, output_height, output_width) # start with black image self.output = self.img.new_zeros(output_shape) tiles_x = math.ceil(width / self.tile_size) tiles_y = math.ceil(height / self.tile_size) # loop over all tiles for y in range(tiles_y): for x in range(tiles_x): # extract tile from input image ofs_x = x * self.tile_size ofs_y = y * self.tile_size # input tile area on total image input_start_x = ofs_x input_end_x = min(ofs_x + self.tile_size, width) input_start_y = ofs_y input_end_y = min(ofs_y + self.tile_size, height) # input tile area on total image with padding input_start_x_pad = max(input_start_x - self.tile_pad, 0) input_end_x_pad = min(input_end_x + self.tile_pad, width) input_start_y_pad = max(input_start_y - self.tile_pad, 0) input_end_y_pad = min(input_end_y + self.tile_pad, height) # input tile dimensions input_tile_width = input_end_x - input_start_x input_tile_height = input_end_y - input_start_y tile_idx = y * tiles_x + x + 1 input_tile = self.img[0:self.img.shape[0], 0:self.img.shape[1], input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad] # upscale tile try: with torch.no_grad(): output_tile = self.model(input_tile) except RuntimeError as error: print('Error', error) print(f'\tTile {tile_idx}/{tiles_x * tiles_y}') # output tile area on total image output_start_x = input_start_x * self.scale output_end_x = input_end_x * self.scale output_start_y = input_start_y * self.scale output_end_y = input_end_y * self.scale # output tile area without padding output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale output_end_x_tile = output_start_x_tile + input_tile_width * self.scale output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale output_end_y_tile = output_start_y_tile + input_tile_height * self.scale self.output = self.output.cpu() # put tile into output image self.output[0:self.output.shape[0], 0:self.output.shape[1], output_start_y:output_end_y, output_start_x:output_end_x] = output_tile.cpu()[0:output_tile.shape[0], 0:output_tile.shape[1], output_start_y_tile:output_end_y_tile, output_start_x_tile:output_end_x_tile] self.output = self.output.to(output_tile.device) RealESRGANer.tile_process = tile_process