petals-api / src /server /server.py
ybelkada's picture
first files(
5bdad4f
from __future__ import annotations
import multiprocessing as mp
import threading
from typing import Dict, Optional, Sequence, Union
import torch
from hivemind import DHT, MAX_DHT_TIME_DISCREPANCY_SECONDS, BatchTensorDescriptor, get_dht_time
from hivemind.moe.server.layers import add_custom_models_from_file
from hivemind.moe.server.runtime import Runtime
from hivemind.proto.runtime_pb2 import CompressionType
from hivemind.utils.logging import get_logger, use_hivemind_log_handler
from src import declare_active_modules, BloomConfig
from src.bloom.from_pretrained import DTYPE_MAP, load_pretrained_block
from src.data_structures import CHAIN_DELIMITER, UID_DELIMITER
from src.server.backend import TransformerBackend
from src.server.cache import MemoryCache
from src.server.handler import TransformerConnectionHandler
use_hivemind_log_handler("in_root_logger")
logger = get_logger(__file__)
class Server(threading.Thread):
"""Serves one or more bloom layers for inference, forward and backward; announces oneself to the DHT"""
def __init__(
self,
dht: DHT,
module_backends: Dict[str, TransformerBackend],
*,
device: torch.device,
num_connection_handlers: int = 8,
update_period: float = 30,
expiration: Optional[float] = None,
start: bool,
**kwargs,
):
threading.Thread.__init__(self)
self.dht, self.module_backends, self.update_period = dht, module_backends, update_period
self.conn_handlers = [
TransformerConnectionHandler(dht, self.module_backends) for _ in range(num_connection_handlers)
]
self.runtime = Runtime(self.module_backends, device=device, **kwargs)
self.dht_handler_thread = ModuleAnnouncerThread(
self.module_backends, dht, update_period, expiration, daemon=True
)
self.checkpoint_saver = None # no need to save checkpoints since we do not change model state
if start:
self.run_in_background(await_ready=True)
def run(self):
"""
Starts Server in the current thread. Initializes dht if necessary, starts connection handlers,
runs Runtime (self.runtime) to process incoming requests.
"""
logger.info(f"Serving {len(self.module_backends)} blocks:")
for expert_name, backend in self.module_backends.items():
num_parameters = sum(p.numel() for p in backend.module.parameters() if p.requires_grad)
logger.info(f"{expert_name}: {backend.module.__class__.__name__}, {num_parameters} parameters")
if not self.dht.is_alive():
self.dht.run_in_background(await_ready=True)
if self.module_backends:
self.dht_handler_thread.start()
if self.checkpoint_saver is not None:
self.checkpoint_saver.start()
for process in self.conn_handlers:
if not process.is_alive():
process.start()
process.ready.result()
try:
self.runtime.run()
finally:
self.shutdown()
# noinspection PyMethodOverriding
@classmethod
def create(
cls,
prefix: Optional[str],
converted_model_name_or_path: str,
num_blocks: Optional[int] = None,
block_indices: Optional[str] = None,
num_handlers: Optional[int] = None,
min_batch_size: int = 1,
max_batch_size: int = 4096,
torch_dtype: str = "auto",
cache_size_bytes: Optional[int] = None,
device: Union[str, torch.device] = None,
initial_peers: Sequence[str] = (),
compression=CompressionType.NONE,
stats_report_interval: Optional[int] = None,
custom_module_path=None,
update_period: float = 30,
expiration: Optional[float] = None,
use_auth_token: Optional[str] = None,
*,
start: bool,
**kwargs,
) -> Server:
"""Create a server with one or more bloom blocks. See run_server.py for documentation."""
if custom_module_path is not None:
add_custom_models_from_file(custom_module_path)
if prefix is None:
prefix = converted_model_name_or_path
assert UID_DELIMITER not in prefix and CHAIN_DELIMITER not in prefix, (
f"Cannot use model name as prefix (contains '{UID_DELIMITER}' or '{CHAIN_DELIMITER}'); "
f"Please specify --prefix manually when starting a server"
)
logger.info(f"Automatic dht prefix: {prefix}")
assert (block_indices is None) != (num_blocks is None), "please specify num_blocks or block_indices, not both"
dht = DHT(initial_peers=initial_peers, start=True, **kwargs)
visible_maddrs_str = [str(a) for a in dht.get_visible_maddrs()]
logger.info(f"Running DHT node on {visible_maddrs_str}, initial peers = {initial_peers}")
device = device or ("cuda" if torch.cuda.is_available() else "cpu")
memory_cache = MemoryCache(device, cache_size_bytes)
if isinstance(torch_dtype, str):
torch_dtype = DTYPE_MAP[torch_dtype]
assert torch_dtype in DTYPE_MAP.values(), f"torch_dtype must be one of {list(DTYPE_MAP.values())}"
if block_indices is not None:
try:
first_block_index, last_block_index = block_indices.split(":")
first_block_index, last_block_index = map(int, map(str.strip, (first_block_index, last_block_index)))
except Exception as e:
logger.error(f"Failed to parse --block_indices ({e}), must be start:end (e.g. 0:18)")
raise
block_indices = range(first_block_index, last_block_index)
else:
assert num_blocks is not None
block_indices = range(num_blocks) # TODO replace with proper load balancing
block_config = BloomConfig.from_pretrained(
converted_model_name_or_path, use_auth_token=use_auth_token
)
# initialize modules
blocks = {}
for block_index in block_indices:
module_uid = f"{prefix}.{block_index}"
block = load_pretrained_block(
converted_model_name_or_path,
block_index,
block_config,
torch_dtype=torch_dtype,
use_auth_token=use_auth_token,
)
for param in block.parameters():
param.requires_grad = False
blocks[module_uid] = TransformerBackend(
module_uid,
block,
memory_cache=memory_cache,
args_schema=(BatchTensorDescriptor(1, 2048, block_config.hidden_size, compression=compression),),
kwargs_schema={},
outputs_schema=(BatchTensorDescriptor(1, 2048, block_config.hidden_size, compression=compression),),
min_batch_size=min_batch_size,
max_batch_size=max_batch_size,
)
num_handlers = num_handlers if num_handlers is not None else len(blocks) * 4
return cls(
dht,
blocks,
num_connection_handlers=num_handlers,
device=device,
stats_report_interval=stats_report_interval,
update_period=update_period,
expiration=expiration,
start=start,
)
def run_in_background(self, await_ready=True, timeout=None):
"""
Starts Server in a background thread. if await_ready, this method will wait until background server
is ready to process incoming requests or for :timeout: seconds max.
"""
self.start()
if await_ready and not self.ready.wait(timeout=timeout):
raise TimeoutError("Server didn't notify .ready in {timeout} seconds")
@property
def ready(self) -> mp.synchronize.Event:
"""
An event (multiprocessing.Event) that is set when the server is ready to process requests.
Example
=======
>>> server.start()
>>> server.ready.wait(timeout=10)
>>> print("Server ready" if server.ready.is_set() else "Server didn't start in 10 seconds")
"""
return self.runtime.ready # mp.Event that is true if self is ready to process batches
def shutdown(self):
"""
Gracefully terminate the server, process-safe.
Please note that terminating server otherwise (e.g. by killing processes) may result in zombie processes.
If you did already cause a zombie outbreak, your only option is to kill them with -9 (SIGKILL).
"""
self.ready.clear()
for process in self.conn_handlers:
process.terminate()
process.join()
logger.debug("Connection handlers terminated")
if self.module_backends:
self.dht_handler_thread.stop.set()
self.dht_handler_thread.join()
if self.checkpoint_saver is not None:
self.checkpoint_saver.stop.set()
self.checkpoint_saver.join()
self.dht.shutdown()
self.dht.join()
logger.debug(f"Shutting down runtime")
self.runtime.shutdown()
logger.info("Server shutdown succesfully")
class ModuleAnnouncerThread(threading.Thread):
"""Periodically announces that this server hosts the specified modules, visible to all DHT peers"""
def __init__(
self, module_backends, dht: DHT, update_period: float = 30, expiration: Optional[int] = None, **kwargs
):
super().__init__(**kwargs)
if expiration is None:
expiration = max(2 * update_period, MAX_DHT_TIME_DISCREPANCY_SECONDS)
self.module_backends = module_backends
self.dht = dht
self.update_period = update_period
self.expiration = expiration
self.stop = threading.Event()
def run(self) -> None:
declare_active_modules(self.dht, self.module_backends.keys(), get_dht_time() + self.expiration)
while not self.stop.wait(self.update_period):
declare_active_modules(self.dht, self.module_backends.keys(), get_dht_time() + self.expiration)