petals-api / src /client /remote_sequential.py
ybelkada's picture
first files(
5bdad4f
from __future__ import annotations
import contextlib
import logging
import random
import torch
from hivemind import DHT, P2P, get_logger, use_hivemind_log_handler
from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
from hivemind.moe.expert_uid import ExpertInfo
from torch import nn
import src
from src.client.remote_block import RemoteTransformerBlock
from src.client.remote_sequence_info import RemoteSequenceInfo
from src.data_structures import UID_DELIMITER
from src.dht_utils import _create_remote_modules_from_infos
use_hivemind_log_handler("in_root_logger")
logger = get_logger(__file__)
class RemoteSequential(nn.Module):
"""
A sequence of transformer blocks hosted by the swarm.
"""
def __init__(self, config: src.DistributedBloomConfig, dht: DHT, prefix: str, max_retries: int = 3):
logger.warning(f"{self.__class__.__name__} is in active development; expect adventures")
if prefix.endswith(UID_DELIMITER):
logger.warning(
f"dht_prefix {prefix} already ends with '{UID_DELIMITER}'."
f"This will cause {self.__class__.__name__} to look for modules under "
f"{prefix}{UID_DELIMITER}*. Please make sure this is what you intended."
)
super().__init__()
self.config = config
self.dht = dht
self.prefix = prefix
self.max_retries = max_retries
self.p2p = RemoteExpertWorker.run_coroutine(dht.replicate_p2p())
block_uids = tuple(f"{prefix}{UID_DELIMITER}{i}" for i in range(config.n_layer))
logger.debug(f"Remote block uids: {block_uids}")
self.remote_sequence_info = RemoteSequenceInfo(dht, block_uids)
def forward(self, inputs: torch.Tensor):
assert isinstance(inputs, torch.Tensor) and inputs.ndim == 3 and inputs.shape[-1] == self.config.n_embed
for block_index in range(self.config.n_layer):
for retry_index in range(self.max_retries):
try:
block = self[block_index]
(outputs,) = block(inputs)
assert isinstance(outputs, torch.Tensor)
assert outputs.shape == inputs.shape, f"Expected {block} output {inputs.shape}, got {outputs.shape}"
inputs = outputs
break
except Exception as e:
if retry_index == self.max_retries - 1:
raise e
else:
logging.debug(f"Caught {e} when running forward for block {block_index}", exc_info=True)
return inputs
def __getitem__(self, block_index: int):
assert 0 <= block_index < self.config.n_layer
(module,) = _create_remote_modules_from_infos([self.remote_sequence_info.block_infos[block_index]], self.p2p)
return module
def __iter__(self):
for block_index in range(self.config.n_layer):
yield self[block_index]
def __len__(self):
return len(self.remote_sequence_info)
def inference_session(self) -> RemoteSequentialInferenceSession:
self.remote_sequence_info.update_()
return RemoteSequentialInferenceSession(self.remote_sequence_info, self.p2p)
class RemoteSequentialInferenceSession:
"""An interface to a multi-step *inference* session for a sequence of remote transformer blocks"""
def __init__(self, remote_sequence_info: RemoteSequenceInfo, p2p: P2P):
self.remote_sequence_info = remote_sequence_info
self.p2p = p2p
self.closed = False
self.stack = contextlib.ExitStack()
self.active_sessions = []
def __enter__(self):
assert not self.closed
self.stack.__enter__()
# TODO(yozh) replace this code with a fault-tolerant chain that can be reconstructed if some peers fail
current_block = 0
while current_block != len(self.remote_sequence_info):
candidate_spans = self.remote_sequence_info.spans_containing_block[current_block]
chosen_span = random.choice(candidate_spans) # TODO this is a temporary code
assert chosen_span.start <= current_block < chosen_span.end
# TODO begin throwaway prototype code
remote = RemoteTransformerBlock(self.remote_sequence_info.block_infos[current_block], self.p2p)
_ = remote.info # TODO fix
span_uids = self.remote_sequence_info.block_uids[current_block : chosen_span.end]
remote._info = ExpertInfo(" ".join(span_uids), chosen_span.peer_id)
self.active_sessions.append(remote.inference_session())
self.stack.enter_context(self.active_sessions[-1])
current_block = chosen_span.end
# TODO end throwaway prototype code
return self
def step(self, inputs: torch.Tensor):
assert not self.closed
for session in self.active_sessions:
outputs = session.step(inputs)
assert outputs.shape == inputs.shape, f"expected {inputs.shape}, got {outputs.shape}"
inputs = outputs
return inputs
def close(self, *exc_details):
"""Finish a given inference session, close the underlying connection"""
if not self.closed:
self.stack.__exit__(*exc_details or (None, None, None))
self.active_sessions.clear()
self.closed = True
def __exit__(self, *exc_details):
self.close(*exc_details)
def __del__(self):
self.close()