Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,12 +11,79 @@ model = torch.jit.load(TORCHSCRIPT_PATH)
|
|
| 11 |
|
| 12 |
with open(LABELS_PATH, "r") as f:
|
| 13 |
idx2Label = json.load(f)["idx2Label"]
|
| 14 |
-
|
| 15 |
img_transforms = transforms.ToTensor()
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
def predict(img, conf_thresh=0.4):
|
| 18 |
img_input = [img_transforms(img)]
|
| 19 |
_, pred = model(img_input)
|
|
|
|
| 20 |
out_img = img.copy()
|
| 21 |
draw = ImageDraw.Draw(out_img)
|
| 22 |
font = ImageFont.truetype("res/Tuffy_Bold.ttf", 25)
|
|
@@ -37,7 +104,7 @@ def predict(img, conf_thresh=0.4):
|
|
| 37 |
draw.text((x1, y1), text, font=font, fill="black")
|
| 38 |
|
| 39 |
return out_img
|
| 40 |
-
|
| 41 |
example_imgs = [
|
| 42 |
["res/example.jpg", 0.4],
|
| 43 |
["res/screenlane-snapchat-profile.jpg", 0.4],
|
|
|
|
| 11 |
|
| 12 |
with open(LABELS_PATH, "r") as f:
|
| 13 |
idx2Label = json.load(f)["idx2Label"]
|
| 14 |
+
|
| 15 |
img_transforms = transforms.ToTensor()
|
| 16 |
+
|
| 17 |
+
# inter_class_nms and iou functions implemented by GPT
|
| 18 |
+
def inter_class_nms(boxes, scores, iou_threshold=0.5):
|
| 19 |
+
# Convert boxes and scores to torch tensors if they are not already
|
| 20 |
+
boxes = torch.as_tensor(boxes)
|
| 21 |
+
scores, class_indices = scores.max(dim=1)
|
| 22 |
+
|
| 23 |
+
# Keep track of final boxes and scores
|
| 24 |
+
final_boxes = []
|
| 25 |
+
final_scores = []
|
| 26 |
+
final_class_indices = []
|
| 27 |
+
|
| 28 |
+
for class_index in range(scores.shape[1]):
|
| 29 |
+
# Filter boxes and scores for the current class
|
| 30 |
+
class_scores = scores[:, class_index]
|
| 31 |
+
class_boxes = boxes
|
| 32 |
+
|
| 33 |
+
# Indices of boxes sorted by score (highest first)
|
| 34 |
+
sorted_indices = torch.argsort(class_scores, descending=True)
|
| 35 |
+
|
| 36 |
+
while len(sorted_indices) > 0:
|
| 37 |
+
# Take the box with the highest score
|
| 38 |
+
highest_index = sorted_indices[0]
|
| 39 |
+
highest_box = class_boxes[highest_index]
|
| 40 |
+
|
| 41 |
+
# Add the highest box and score to the final list
|
| 42 |
+
final_boxes.append(highest_box)
|
| 43 |
+
final_scores.append(class_scores[highest_index])
|
| 44 |
+
final_class_indices.append(class_index)
|
| 45 |
+
|
| 46 |
+
# Remove the highest box from the list
|
| 47 |
+
sorted_indices = sorted_indices[1:]
|
| 48 |
+
|
| 49 |
+
# Compute IoU of the highest box with the rest
|
| 50 |
+
ious = iou(class_boxes[sorted_indices], highest_box)
|
| 51 |
+
|
| 52 |
+
# Keep only boxes with IoU less than the threshold
|
| 53 |
+
sorted_indices = sorted_indices[ious < iou_threshold]
|
| 54 |
+
|
| 55 |
+
return {'boxes': final_boxes, 'scores': final_scores}
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def iou(boxes1, boxes2):
|
| 59 |
+
"""
|
| 60 |
+
Compute the Intersection over Union (IoU) of two sets of boxes.
|
| 61 |
+
|
| 62 |
+
Args:
|
| 63 |
+
- boxes1 (Tensor[N, 4]): ground truth boxes
|
| 64 |
+
- boxes2 (Tensor[M, 4]): predicted boxes
|
| 65 |
+
|
| 66 |
+
Returns:
|
| 67 |
+
- iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
area1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1])
|
| 71 |
+
area2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1])
|
| 72 |
+
|
| 73 |
+
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
|
| 74 |
+
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
|
| 75 |
+
|
| 76 |
+
wh = (rb - lt).clamp(min=0) # [N,M,2]
|
| 77 |
+
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
|
| 78 |
+
|
| 79 |
+
iou = inter / (area1[:, None] + area2 - inter)
|
| 80 |
+
|
| 81 |
+
return iou
|
| 82 |
+
|
| 83 |
def predict(img, conf_thresh=0.4):
|
| 84 |
img_input = [img_transforms(img)]
|
| 85 |
_, pred = model(img_input)
|
| 86 |
+
pred = inter_class_nms(pred['boxes'], pred['scores'])
|
| 87 |
out_img = img.copy()
|
| 88 |
draw = ImageDraw.Draw(out_img)
|
| 89 |
font = ImageFont.truetype("res/Tuffy_Bold.ttf", 25)
|
|
|
|
| 104 |
draw.text((x1, y1), text, font=font, fill="black")
|
| 105 |
|
| 106 |
return out_img
|
| 107 |
+
|
| 108 |
example_imgs = [
|
| 109 |
["res/example.jpg", 0.4],
|
| 110 |
["res/screenlane-snapchat-profile.jpg", 0.4],
|