import gradio as gr import numpy as np import h5py import faiss import json from transformers import AutoTokenizer, AutoModel from sentence_transformers import SentenceTransformer, models from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import re from collections import Counter import spacy import joblib # Load Spacy model for advanced NLP try: nlp = spacy.load("en_core_web_sm") except IOError: print("Downloading spacy model...") spacy.cli.download("en_core_web_sm") nlp = spacy.load("en_core_web_sm") def load_data(): try: with h5py.File('patent_embeddings.h5', 'r') as f: embeddings = f['embeddings'][:] patent_numbers = f['patent_numbers'][:] metadata = {} texts = [] with open('patent_metadata.jsonl', 'r') as f: for line in f: data = json.loads(line) metadata[data['patent_number']] = data texts.append(data['text']) print(f"Embedding shape: {embeddings.shape}") print(f"Number of patent numbers: {len(patent_numbers)}") print(f"Number of metadata entries: {len(metadata)}") return embeddings, patent_numbers, metadata, texts except FileNotFoundError as e: print(f"Error: Could not find file. {e}") raise except Exception as e: print(f"An unexpected error occurred while loading data: {e}") raise embeddings, patent_numbers, metadata, texts = load_data() # Load BERT model for encoding search queries try: tokenizer = AutoTokenizer.from_pretrained('anferico/bert-for-patents') bert_model = AutoModel.from_pretrained('anferico/bert-for-patents') word_embedding_model = models.Transformer(model_name='anferico/bert-for-patents', tokenizer=tokenizer, model=bert_model) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) except Exception as e: print(f"Error loading anferico/bert-for-patents: {e}") print("Falling back to a general-purpose model.") model = SentenceTransformer('all-MiniLM-L6-v2') # Check if the embedding dimensions match if embeddings.shape[1] != model.get_sentence_embedding_dimension(): print("Embedding dimensions do not match. Rebuilding FAISS index.") # Rebuild embeddings using the new model embeddings = np.array([model.encode(text) for text in texts]) embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True) # Normalize embeddings for cosine similarity embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True) # Create FAISS index for cosine similarity index = faiss.IndexFlatIP(embeddings.shape[1]) index.add(embeddings) # Create and save TF-IDF vectorizer tfidf_vectorizer = TfidfVectorizer(stop_words='english') tfidf_matrix = tfidf_vectorizer.fit_transform(texts) joblib.dump(tfidf_vectorizer, 'tfidf_vectorizer.joblib') def extract_key_features(text): # Use Spacy to extract noun phrases and key phrases doc = nlp(text) noun_phrases = [chunk.text.lower() for chunk in doc.noun_chunks] feature_phrases = [sent.text.lower() for sent in doc.sents if re.search(r'(comprising|including|consisting of)', sent.text, re.IGNORECASE)] all_features = noun_phrases + feature_phrases return list(set(all_features)) def compare_features(query_features, patent_features): common_features = set(query_features) & set(patent_features) similarity_score = len(common_features) / max(len(query_features), len(patent_features)) return common_features, similarity_score def hybrid_search(query, top_k=5): print(f"Original query: {query}") query_features = extract_key_features(query) # Encode the query using the transformer model query_embedding = model.encode([query])[0] query_embedding = query_embedding / np.linalg.norm(query_embedding) # Perform semantic similarity search semantic_distances, semantic