import gradio as gr import numpy as np import h5py import faiss import json from sentence_transformers import SentenceTransformer # Load embeddings and metadata def load_data(): with h5py.File('patent_embeddings.h5', 'r') as f: embeddings = f['embeddings'][:] patent_numbers = f['patent_numbers'][:] metadata = {} with open('patent_metadata.jsonl', 'r') as f: for line in f: data = json.loads(line) metadata[data['patent_number']] = data return embeddings, patent_numbers, metadata embeddings, patent_numbers, metadata = load_data() # Create FAISS index index = faiss.IndexFlatL2(embeddings.shape[1]) index.add(embeddings) # Load BERT model for encoding search queries model = SentenceTransformer('all-MiniLM-L6-v2') def search(query, top_k=5): # Encode the query query_embedding = model.encode([query])[0] # Perform similarity search distances, indices = index.search(np.array([query_embedding]), top_k) results = [] for i, idx in enumerate(indices[0]): patent_number = patent_numbers[idx] patent_data = metadata[patent_number] result = f"Patent Number: {patent_number}\n" result += f"Abstract: {patent_data['abstract'][:200]}...\n" result += f"Similarity Score: {1 - distances[0][i]:.4f}\n\n" results.append(result) return "\n".join(results) # Create Gradio interface iface = gr.Interface( fn=search, inputs=gr.Textbox(lines=2, placeholder="Enter your search query here..."), outputs=gr.Textbox(lines=10, label="Search Results"), title="Patent Similarity Search", description="Enter a query to find similar patents based on their embeddings." ) iface.launch()