Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -30,40 +30,34 @@ def format_stars(score):
|
|
| 30 |
score_int = int(score)
|
| 31 |
except Exception:
|
| 32 |
score_int = 0
|
| 33 |
-
# Display a star rating (★) based on the energy score.
|
| 34 |
return f'<span style="color: #3fa45bff; font-size:2em;">{"★" * score_int}</span>'
|
| 35 |
|
| 36 |
def make_link(mname):
|
| 37 |
-
# Make a Markdown link from the model name.
|
| 38 |
parts = str(mname).split('/')
|
| 39 |
display_name = parts[1] if len(parts) > 1 else mname
|
| 40 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
| 41 |
|
| 42 |
-
def
|
| 43 |
-
|
| 44 |
df = pd.read_csv('data/energy/' + task)
|
| 45 |
-
# If the
|
| 46 |
-
if df.columns
|
| 47 |
df = df.iloc[:, 1:]
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
| 49 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
| 50 |
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
| 51 |
-
# Create a short version of the model name for display on the y-axis.
|
| 52 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 53 |
|
| 54 |
-
# Define a discrete color mapping for energy scores.
|
| 55 |
color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
|
| 56 |
|
| 57 |
-
# Build a scatter plot:
|
| 58 |
-
# - x-axis: total_gpu_energy
|
| 59 |
-
# - y-axis: Display Model (short model name)
|
| 60 |
-
# - Color: energy_score
|
| 61 |
-
# - Custom tooltip will include the full model name, energy value and energy score.
|
| 62 |
fig = px.scatter(
|
| 63 |
df,
|
| 64 |
-
x="total_gpu_energy",
|
| 65 |
y="Display Model",
|
| 66 |
-
color="energy_score",
|
| 67 |
custom_data=['model', 'total_gpu_energy', 'energy_score'],
|
| 68 |
height=500,
|
| 69 |
width=800,
|
|
@@ -84,12 +78,9 @@ def get_plots(task):
|
|
| 84 |
return fig
|
| 85 |
|
| 86 |
def get_all_plots():
|
| 87 |
-
# Combine data from all tasks.
|
| 88 |
all_df = pd.DataFrame()
|
| 89 |
for task in tasks:
|
| 90 |
-
df =
|
| 91 |
-
if df.columns[0].startswith("Unnamed:"):
|
| 92 |
-
df = df.iloc[:, 1:]
|
| 93 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
| 94 |
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
| 95 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
|
@@ -126,13 +117,11 @@ def get_model_names(task):
|
|
| 126 |
"""
|
| 127 |
For a given task, load the energy CSV and return a dataframe with the following columns:
|
| 128 |
- Model (a markdown link)
|
| 129 |
-
- GPU Energy (Wh)
|
| 130 |
- Score (a star rating based on energy_score)
|
| 131 |
-
For text_generation.csv only, also
|
| 132 |
"""
|
| 133 |
-
df =
|
| 134 |
-
if df.columns[0].startswith("Unnamed:"):
|
| 135 |
-
df = df.iloc[:, 1:]
|
| 136 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
| 137 |
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
| 138 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
|
@@ -145,7 +134,7 @@ def get_model_names(task):
|
|
| 145 |
else:
|
| 146 |
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
|
| 147 |
|
| 148 |
-
# Sort by the numeric
|
| 149 |
df = df.sort_values(by='total_gpu_energy')
|
| 150 |
return df
|
| 151 |
|
|
@@ -157,9 +146,7 @@ def get_all_model_names():
|
|
| 157 |
"""
|
| 158 |
all_df = pd.DataFrame()
|
| 159 |
for task in tasks:
|
| 160 |
-
df =
|
| 161 |
-
if df.columns[0].startswith("Unnamed:"):
|
| 162 |
-
df = df.iloc[:, 1:]
|
| 163 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
| 164 |
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
| 165 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
|
@@ -171,7 +158,6 @@ def get_all_model_names():
|
|
| 171 |
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
| 172 |
|
| 173 |
# Build the Gradio interface.
|
| 174 |
-
# The CSS below sets fixed layouts for tables.
|
| 175 |
demo = gr.Blocks(css="""
|
| 176 |
.gr-dataframe table {
|
| 177 |
table-layout: fixed;
|
|
@@ -198,7 +184,8 @@ Click through the tasks below to see how different models measure up in terms of
|
|
| 198 |
with gr.Tabs():
|
| 199 |
with gr.TabItem("Text Generation 💬"):
|
| 200 |
with gr.Row():
|
| 201 |
-
|
|
|
|
| 202 |
plot = gr.Plot(get_plots('text_generation.csv'))
|
| 203 |
with gr.Column(scale=1):
|
| 204 |
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown")
|
|
|
|
| 30 |
score_int = int(score)
|
| 31 |
except Exception:
|
| 32 |
score_int = 0
|
|
|
|
| 33 |
return f'<span style="color: #3fa45bff; font-size:2em;">{"★" * score_int}</span>'
|
| 34 |
|
| 35 |
def make_link(mname):
|
|
|
|
| 36 |
parts = str(mname).split('/')
|
| 37 |
display_name = parts[1] if len(parts) > 1 else mname
|
| 38 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
| 39 |
|
| 40 |
+
def read_csv_drop_extra(task):
|
| 41 |
+
"""Helper to load CSV and drop the first column if necessary."""
|
| 42 |
df = pd.read_csv('data/energy/' + task)
|
| 43 |
+
# If the expected "total_gpu_energy" column is missing, drop the first column.
|
| 44 |
+
if "total_gpu_energy" not in df.columns:
|
| 45 |
df = df.iloc[:, 1:]
|
| 46 |
+
return df
|
| 47 |
+
|
| 48 |
+
def get_plots(task):
|
| 49 |
+
df = read_csv_drop_extra(task)
|
| 50 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
| 51 |
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
|
|
|
| 52 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 53 |
|
|
|
|
| 54 |
color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
fig = px.scatter(
|
| 57 |
df,
|
| 58 |
+
x="total_gpu_energy", # Use the correct energy column
|
| 59 |
y="Display Model",
|
| 60 |
+
color="energy_score", # Map energy score to the color
|
| 61 |
custom_data=['model', 'total_gpu_energy', 'energy_score'],
|
| 62 |
height=500,
|
| 63 |
width=800,
|
|
|
|
| 78 |
return fig
|
| 79 |
|
| 80 |
def get_all_plots():
|
|
|
|
| 81 |
all_df = pd.DataFrame()
|
| 82 |
for task in tasks:
|
| 83 |
+
df = read_csv_drop_extra(task)
|
|
|
|
|
|
|
| 84 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
| 85 |
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
| 86 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
|
|
|
| 117 |
"""
|
| 118 |
For a given task, load the energy CSV and return a dataframe with the following columns:
|
| 119 |
- Model (a markdown link)
|
| 120 |
+
- GPU Energy (Wh) formatted to 4 decimal places
|
| 121 |
- Score (a star rating based on energy_score)
|
| 122 |
+
For text_generation.csv only, also add the "Class" column if present.
|
| 123 |
"""
|
| 124 |
+
df = read_csv_drop_extra(task)
|
|
|
|
|
|
|
| 125 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
| 126 |
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
| 127 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
|
|
|
| 134 |
else:
|
| 135 |
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
|
| 136 |
|
| 137 |
+
# Sort by the numeric value (not the formatted string)
|
| 138 |
df = df.sort_values(by='total_gpu_energy')
|
| 139 |
return df
|
| 140 |
|
|
|
|
| 146 |
"""
|
| 147 |
all_df = pd.DataFrame()
|
| 148 |
for task in tasks:
|
| 149 |
+
df = read_csv_drop_extra(task)
|
|
|
|
|
|
|
| 150 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
| 151 |
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
| 152 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
|
|
|
| 158 |
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
| 159 |
|
| 160 |
# Build the Gradio interface.
|
|
|
|
| 161 |
demo = gr.Blocks(css="""
|
| 162 |
.gr-dataframe table {
|
| 163 |
table-layout: fixed;
|
|
|
|
| 184 |
with gr.Tabs():
|
| 185 |
with gr.TabItem("Text Generation 💬"):
|
| 186 |
with gr.Row():
|
| 187 |
+
# Changed scale to an integer (2 vs 1) to avoid warnings.
|
| 188 |
+
with gr.Column(scale=2):
|
| 189 |
plot = gr.Plot(get_plots('text_generation.csv'))
|
| 190 |
with gr.Column(scale=1):
|
| 191 |
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown")
|