|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
from typing import Iterable |
|
|
|
import evaluate |
|
import datasets |
|
import numpy as np |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:module, |
|
title = {A great new module}, |
|
authors={huggingface, Inc.}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Computes precision, recall, f1 scores for joint entity-relation extraction task. |
|
""" |
|
|
|
|
|
|
|
_KWARGS_DESCRIPTION = """ |
|
Calculates how good are predictions given some references, using certain scores |
|
Args: |
|
predictions: list of predictions to score. Each predictions |
|
should be a string with tokens separated by spaces. |
|
references: list of reference for each prediction. Each |
|
reference should be a string with tokens separated by spaces. |
|
Returns: |
|
accuracy: description of the first score, |
|
another_score: description of the second score, |
|
Examples: |
|
Examples should be written in doctest format, and should illustrate how |
|
to use the function. |
|
|
|
>>> my_new_module = evaluate.load("my_new_module") |
|
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) |
|
>>> print(results) |
|
{'accuracy': 1.0} |
|
""" |
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
class jer(evaluate.Metric): |
|
"""TODO: Short description of my evaluation module.""" |
|
|
|
def _info(self): |
|
|
|
return evaluate.MetricInfo( |
|
|
|
module_type="metric", |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
inputs_description=_KWARGS_DESCRIPTION, |
|
|
|
features=datasets.Features({ |
|
'predictions': datasets.features.Sequence(datasets.Value('string')), |
|
'references': datasets.features.Sequence(datasets.Value('string')), |
|
}), |
|
|
|
homepage="http://module.homepage", |
|
|
|
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], |
|
reference_urls=["http://path.to.reference.url/new_module"] |
|
) |
|
|
|
def _download_and_prepare(self, dl_manager): |
|
"""Optional: download external resources useful to compute the scores""" |
|
|
|
pass |
|
|
|
def _compute(self, predictions, references): |
|
"""Returns the scores""" |
|
score_dicts = [ |
|
self._compute_single(prediction=prediction, reference=reference) |
|
for prediction, reference in zip(predictions, references) |
|
] |
|
return {('mean_' + key): np.mean([scores[key] for scores in score_dicts]) for key in score_dicts[0].keys()} |
|
|
|
def _compute_single(self, *, prediction: Iterable[str | tuple | int], reference: Iterable[str | tuple | int]): |
|
reference_set = set(reference) |
|
assert len(reference) == len(reference_set), f"Duplicates found in the reference list {reference}" |
|
prediction_set = set(prediction) |
|
|
|
TP = len(reference_set & prediction_set) |
|
FP = len(prediction_set - reference_set) |
|
FN = len(reference_set - prediction_set) |
|
|
|
|
|
precision = TP / (TP + FP) if TP + FP > 0 else 0 |
|
recall = TP / (TP + FN) if TP + FN > 0 else 0 |
|
f1_score = 2 * (precision * recall) / (precision + recall) if precision + recall > 0 else 0 |
|
|
|
return { |
|
'precision': precision, |
|
'recall': recall, |
|
'f1': f1_score |
|
} |