food-vision-mini / model.py
bbeeravelly's picture
initial commit
0d0fc02
raw
history blame contribute delete
802 Bytes
import torchvision
import torch
from torch import nn
def create_effnetb2_model(num_classes:int=3,
seed:int=42):
# 1, 2, 3 Create EffNetB2 pretrained weights, transforms and model
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
transforms = weights.transforms()
model=torchvision.models.efficientnet_b2(weights = weights)
# 4. Freeze all layers in the base model
for param in model.parameters():
param.requires_grad=False
# 5. Change classifier head with random seed for reproducibility
torch.manual_seed(seed)
model.classifier = nn.Sequential(nn.Dropout(p=0.3, inplace=True),
nn.Linear(in_features=1408, out_features=num_classes))
return model, transforms