from transformers import pipeline | |
from PIL import Image | |
import os | |
import gradio as gr | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
def predict(img) -> Tuple[Dict, float]: | |
start_time = timer() | |
classifier = pipeline("image-classification", model="bazyl/gtsrb-model") | |
result = classifier(img, top_k=5) | |
response = {result[i]["label"]: result[i]["score"] for i in range(len(result))} | |
pred_time = round(timer() - start_time, 3) | |
return response, pred_time | |
title = "GTSRB - German Traffic Sign Recognition by Bazyl Horsey" | |
description = "CNN created for the GTSRB Dataset, achieved 99.93% test accuracy" | |
# Create examples list from "examples/" directory | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[ | |
gr.Label(num_top_classes=5, label="Predictions"), | |
gr.Number(label="Prediction time (s)"), | |
], | |
examples=example_list, | |
title=title, | |
description=description, | |
) | |
# Launch the app! | |
demo.launch() |