|
|
|
import math
|
|
from functools import lru_cache
|
|
import torch
|
|
from torch import nn
|
|
from torch.autograd import Function
|
|
from torch.autograd.function import once_differentiable
|
|
from torch.nn.modules.utils import _pair
|
|
from torchvision.ops import deform_conv2d
|
|
|
|
from detectron2.utils.develop import create_dummy_class, create_dummy_func
|
|
|
|
from .wrappers import _NewEmptyTensorOp
|
|
|
|
|
|
class _DeformConv(Function):
|
|
@staticmethod
|
|
def forward(
|
|
ctx,
|
|
input,
|
|
offset,
|
|
weight,
|
|
stride=1,
|
|
padding=0,
|
|
dilation=1,
|
|
groups=1,
|
|
deformable_groups=1,
|
|
im2col_step=64,
|
|
):
|
|
if input is not None and input.dim() != 4:
|
|
raise ValueError(
|
|
"Expected 4D tensor as input, got {}D tensor instead.".format(input.dim())
|
|
)
|
|
ctx.stride = _pair(stride)
|
|
ctx.padding = _pair(padding)
|
|
ctx.dilation = _pair(dilation)
|
|
ctx.groups = groups
|
|
ctx.deformable_groups = deformable_groups
|
|
ctx.im2col_step = im2col_step
|
|
|
|
ctx.save_for_backward(input, offset, weight)
|
|
|
|
output = input.new_empty(
|
|
_DeformConv._output_size(input, weight, ctx.padding, ctx.dilation, ctx.stride)
|
|
)
|
|
|
|
ctx.bufs_ = [input.new_empty(0), input.new_empty(0)]
|
|
|
|
if not input.is_cuda:
|
|
|
|
if deformable_groups != 1:
|
|
raise NotImplementedError(
|
|
"Deformable Conv with deformable_groups != 1 is not supported on CPUs!"
|
|
)
|
|
return deform_conv2d(
|
|
input, offset, weight, stride=stride, padding=padding, dilation=dilation
|
|
)
|
|
else:
|
|
cur_im2col_step = _DeformConv._cal_im2col_step(input.shape[0], ctx.im2col_step)
|
|
assert (input.shape[0] % cur_im2col_step) == 0, "im2col step must divide batchsize"
|
|
|
|
_C.deform_conv_forward(
|
|
input,
|
|
weight,
|
|
offset,
|
|
output,
|
|
ctx.bufs_[0],
|
|
ctx.bufs_[1],
|
|
weight.size(3),
|
|
weight.size(2),
|
|
ctx.stride[1],
|
|
ctx.stride[0],
|
|
ctx.padding[1],
|
|
ctx.padding[0],
|
|
ctx.dilation[1],
|
|
ctx.dilation[0],
|
|
ctx.groups,
|
|
ctx.deformable_groups,
|
|
cur_im2col_step,
|
|
)
|
|
return output
|
|
|
|
@staticmethod
|
|
@once_differentiable
|
|
def backward(ctx, grad_output):
|
|
input, offset, weight = ctx.saved_tensors
|
|
|
|
grad_input = grad_offset = grad_weight = None
|
|
|
|
if not grad_output.is_cuda:
|
|
raise NotImplementedError("Deformable Conv is not supported on CPUs!")
|
|
else:
|
|
cur_im2col_step = _DeformConv._cal_im2col_step(input.shape[0], ctx.im2col_step)
|
|
assert (input.shape[0] % cur_im2col_step) == 0, "im2col step must divide batchsize"
|
|
|
|
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
|
|
grad_input = torch.zeros_like(input)
|
|
grad_offset = torch.zeros_like(offset)
|
|
_C.deform_conv_backward_input(
|
|
input,
|
|
offset,
|
|
grad_output,
|
|
grad_input,
|
|
grad_offset,
|
|
weight,
|
|
ctx.bufs_[0],
|
|
weight.size(3),
|
|
weight.size(2),
|
|
ctx.stride[1],
|
|
ctx.stride[0],
|
|
ctx.padding[1],
|
|
ctx.padding[0],
|
|
ctx.dilation[1],
|
|
ctx.dilation[0],
|
|
ctx.groups,
|
|
ctx.deformable_groups,
|
|
cur_im2col_step,
|
|
)
|
|
|
|
if ctx.needs_input_grad[2]:
|
|
grad_weight = torch.zeros_like(weight)
|
|
_C.deform_conv_backward_filter(
|
|
input,
|
|
offset,
|
|
grad_output,
|
|
grad_weight,
|
|
ctx.bufs_[0],
|
|
ctx.bufs_[1],
|
|
weight.size(3),
|
|
weight.size(2),
|
|
ctx.stride[1],
|
|
ctx.stride[0],
|
|
ctx.padding[1],
|
|
ctx.padding[0],
|
|
ctx.dilation[1],
|
|
ctx.dilation[0],
|
|
ctx.groups,
|
|
ctx.deformable_groups,
|
|
1,
|
|
cur_im2col_step,
|
|
)
|
|
|
|
return grad_input, grad_offset, grad_weight, None, None, None, None, None, None
|
|
|
|
@staticmethod
|
|
def _output_size(input, weight, padding, dilation, stride):
|
|
channels = weight.size(0)
|
|
output_size = (input.size(0), channels)
|
|
for d in range(input.dim() - 2):
|
|
in_size = input.size(d + 2)
|
|
pad = padding[d]
|
|
kernel = dilation[d] * (weight.size(d + 2) - 1) + 1
|
|
stride_ = stride[d]
|
|
output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1,)
|
|
if not all(map(lambda s: s > 0, output_size)):
|
|
raise ValueError(
|
|
"convolution input is too small (output would be {})".format(
|
|
"x".join(map(str, output_size))
|
|
)
|
|
)
|
|
return output_size
|
|
|
|
@staticmethod
|
|
@lru_cache(maxsize=128)
|
|
def _cal_im2col_step(input_size, default_size):
|
|
"""
|
|
Calculate proper im2col step size, which should be divisible by input_size and not larger
|
|
than prefer_size. Meanwhile the step size should be as large as possible to be more
|
|
efficient. So we choose the largest one among all divisors of input_size which are smaller
|
|
than prefer_size.
|
|
:param input_size: input batch size .
|
|
:param default_size: default preferred im2col step size.
|
|
:return: the largest proper step size.
|
|
"""
|
|
if input_size <= default_size:
|
|
return input_size
|
|
best_step = 1
|
|
for step in range(2, min(int(math.sqrt(input_size)) + 1, default_size)):
|
|
if input_size % step == 0:
|
|
if input_size // step <= default_size:
|
|
return input_size // step
|
|
best_step = step
|
|
|
|
return best_step
|
|
|
|
|
|
class _ModulatedDeformConv(Function):
|
|
@staticmethod
|
|
def forward(
|
|
ctx,
|
|
input,
|
|
offset,
|
|
mask,
|
|
weight,
|
|
bias=None,
|
|
stride=1,
|
|
padding=0,
|
|
dilation=1,
|
|
groups=1,
|
|
deformable_groups=1,
|
|
):
|
|
ctx.stride = stride
|
|
ctx.padding = padding
|
|
ctx.dilation = dilation
|
|
ctx.groups = groups
|
|
ctx.deformable_groups = deformable_groups
|
|
ctx.with_bias = bias is not None
|
|
if not ctx.with_bias:
|
|
bias = input.new_empty(1)
|
|
if not input.is_cuda:
|
|
raise NotImplementedError("Deformable Conv is not supported on CPUs!")
|
|
if (
|
|
weight.requires_grad
|
|
or mask.requires_grad
|
|
or offset.requires_grad
|
|
or input.requires_grad
|
|
):
|
|
ctx.save_for_backward(input, offset, mask, weight, bias)
|
|
output = input.new_empty(_ModulatedDeformConv._infer_shape(ctx, input, weight))
|
|
ctx._bufs = [input.new_empty(0), input.new_empty(0)]
|
|
_C.modulated_deform_conv_forward(
|
|
input,
|
|
weight,
|
|
bias,
|
|
ctx._bufs[0],
|
|
offset,
|
|
mask,
|
|
output,
|
|
ctx._bufs[1],
|
|
weight.shape[2],
|
|
weight.shape[3],
|
|
ctx.stride,
|
|
ctx.stride,
|
|
ctx.padding,
|
|
ctx.padding,
|
|
ctx.dilation,
|
|
ctx.dilation,
|
|
ctx.groups,
|
|
ctx.deformable_groups,
|
|
ctx.with_bias,
|
|
)
|
|
return output
|
|
|
|
@staticmethod
|
|
@once_differentiable
|
|
def backward(ctx, grad_output):
|
|
if not grad_output.is_cuda:
|
|
raise NotImplementedError("Deformable Conv is not supported on CPUs!")
|
|
input, offset, mask, weight, bias = ctx.saved_tensors
|
|
grad_input = torch.zeros_like(input)
|
|
grad_offset = torch.zeros_like(offset)
|
|
grad_mask = torch.zeros_like(mask)
|
|
grad_weight = torch.zeros_like(weight)
|
|
grad_bias = torch.zeros_like(bias)
|
|
_C.modulated_deform_conv_backward(
|
|
input,
|
|
weight,
|
|
bias,
|
|
ctx._bufs[0],
|
|
offset,
|
|
mask,
|
|
ctx._bufs[1],
|
|
grad_input,
|
|
grad_weight,
|
|
grad_bias,
|
|
grad_offset,
|
|
grad_mask,
|
|
grad_output,
|
|
weight.shape[2],
|
|
weight.shape[3],
|
|
ctx.stride,
|
|
ctx.stride,
|
|
ctx.padding,
|
|
ctx.padding,
|
|
ctx.dilation,
|
|
ctx.dilation,
|
|
ctx.groups,
|
|
ctx.deformable_groups,
|
|
ctx.with_bias,
|
|
)
|
|
if not ctx.with_bias:
|
|
grad_bias = None
|
|
|
|
return (
|
|
grad_input,
|
|
grad_offset,
|
|
grad_mask,
|
|
grad_weight,
|
|
grad_bias,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
)
|
|
|
|
@staticmethod
|
|
def _infer_shape(ctx, input, weight):
|
|
n = input.size(0)
|
|
channels_out = weight.size(0)
|
|
height, width = input.shape[2:4]
|
|
kernel_h, kernel_w = weight.shape[2:4]
|
|
height_out = (
|
|
height + 2 * ctx.padding - (ctx.dilation * (kernel_h - 1) + 1)
|
|
) // ctx.stride + 1
|
|
width_out = (
|
|
width + 2 * ctx.padding - (ctx.dilation * (kernel_w - 1) + 1)
|
|
) // ctx.stride + 1
|
|
return n, channels_out, height_out, width_out
|
|
|
|
|
|
deform_conv = _DeformConv.apply
|
|
modulated_deform_conv = _ModulatedDeformConv.apply
|
|
|
|
|
|
class DeformConv(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride=1,
|
|
padding=0,
|
|
dilation=1,
|
|
groups=1,
|
|
deformable_groups=1,
|
|
bias=False,
|
|
norm=None,
|
|
activation=None,
|
|
):
|
|
"""
|
|
Deformable convolution from :paper:`deformconv`.
|
|
|
|
Arguments are similar to :class:`Conv2D`. Extra arguments:
|
|
|
|
Args:
|
|
deformable_groups (int): number of groups used in deformable convolution.
|
|
norm (nn.Module, optional): a normalization layer
|
|
activation (callable(Tensor) -> Tensor): a callable activation function
|
|
"""
|
|
super(DeformConv, self).__init__()
|
|
|
|
assert not bias
|
|
assert in_channels % groups == 0, "in_channels {} cannot be divisible by groups {}".format(
|
|
in_channels, groups
|
|
)
|
|
assert (
|
|
out_channels % groups == 0
|
|
), "out_channels {} cannot be divisible by groups {}".format(out_channels, groups)
|
|
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.kernel_size = _pair(kernel_size)
|
|
self.stride = _pair(stride)
|
|
self.padding = _pair(padding)
|
|
self.dilation = _pair(dilation)
|
|
self.groups = groups
|
|
self.deformable_groups = deformable_groups
|
|
self.norm = norm
|
|
self.activation = activation
|
|
|
|
self.weight = nn.Parameter(
|
|
torch.Tensor(out_channels, in_channels // self.groups, *self.kernel_size)
|
|
)
|
|
self.bias = None
|
|
|
|
nn.init.kaiming_uniform_(self.weight, nonlinearity="relu")
|
|
|
|
def forward(self, x, offset):
|
|
if x.numel() == 0:
|
|
|
|
|
|
|
|
|
|
output_shape = [
|
|
(i + 2 * p - (di * (k - 1) + 1)) // s + 1
|
|
for i, p, di, k, s in zip(
|
|
x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride
|
|
)
|
|
]
|
|
output_shape = [x.shape[0], self.weight.shape[0]] + output_shape
|
|
return _NewEmptyTensorOp.apply(x, output_shape)
|
|
|
|
x = deform_conv(
|
|
x,
|
|
offset,
|
|
self.weight,
|
|
self.stride,
|
|
self.padding,
|
|
self.dilation,
|
|
self.groups,
|
|
self.deformable_groups,
|
|
)
|
|
if self.norm is not None:
|
|
x = self.norm(x)
|
|
if self.activation is not None:
|
|
x = self.activation(x)
|
|
return x
|
|
|
|
def extra_repr(self):
|
|
tmpstr = "in_channels=" + str(self.in_channels)
|
|
tmpstr += ", out_channels=" + str(self.out_channels)
|
|
tmpstr += ", kernel_size=" + str(self.kernel_size)
|
|
tmpstr += ", stride=" + str(self.stride)
|
|
tmpstr += ", padding=" + str(self.padding)
|
|
tmpstr += ", dilation=" + str(self.dilation)
|
|
tmpstr += ", groups=" + str(self.groups)
|
|
tmpstr += ", deformable_groups=" + str(self.deformable_groups)
|
|
tmpstr += ", bias=False"
|
|
return tmpstr
|
|
|
|
|
|
class ModulatedDeformConv(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride=1,
|
|
padding=0,
|
|
dilation=1,
|
|
groups=1,
|
|
deformable_groups=1,
|
|
bias=True,
|
|
norm=None,
|
|
activation=None,
|
|
):
|
|
"""
|
|
Modulated deformable convolution from :paper:`deformconv2`.
|
|
|
|
Arguments are similar to :class:`Conv2D`. Extra arguments:
|
|
|
|
Args:
|
|
deformable_groups (int): number of groups used in deformable convolution.
|
|
norm (nn.Module, optional): a normalization layer
|
|
activation (callable(Tensor) -> Tensor): a callable activation function
|
|
"""
|
|
super(ModulatedDeformConv, self).__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.kernel_size = _pair(kernel_size)
|
|
self.stride = stride
|
|
self.padding = padding
|
|
self.dilation = dilation
|
|
self.groups = groups
|
|
self.deformable_groups = deformable_groups
|
|
self.with_bias = bias
|
|
self.norm = norm
|
|
self.activation = activation
|
|
|
|
self.weight = nn.Parameter(
|
|
torch.Tensor(out_channels, in_channels // groups, *self.kernel_size)
|
|
)
|
|
if bias:
|
|
self.bias = nn.Parameter(torch.Tensor(out_channels))
|
|
else:
|
|
self.bias = None
|
|
|
|
nn.init.kaiming_uniform_(self.weight, nonlinearity="relu")
|
|
if self.bias is not None:
|
|
nn.init.constant_(self.bias, 0)
|
|
|
|
def forward(self, x, offset, mask):
|
|
if x.numel() == 0:
|
|
output_shape = [
|
|
(i + 2 * p - (di * (k - 1) + 1)) // s + 1
|
|
for i, p, di, k, s in zip(
|
|
x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride
|
|
)
|
|
]
|
|
output_shape = [x.shape[0], self.weight.shape[0]] + output_shape
|
|
return _NewEmptyTensorOp.apply(x, output_shape)
|
|
|
|
x = modulated_deform_conv(
|
|
x,
|
|
offset,
|
|
mask,
|
|
self.weight,
|
|
self.bias,
|
|
self.stride,
|
|
self.padding,
|
|
self.dilation,
|
|
self.groups,
|
|
self.deformable_groups,
|
|
)
|
|
if self.norm is not None:
|
|
x = self.norm(x)
|
|
if self.activation is not None:
|
|
x = self.activation(x)
|
|
return x
|
|
|
|
def extra_repr(self):
|
|
tmpstr = "in_channels=" + str(self.in_channels)
|
|
tmpstr += ", out_channels=" + str(self.out_channels)
|
|
tmpstr += ", kernel_size=" + str(self.kernel_size)
|
|
tmpstr += ", stride=" + str(self.stride)
|
|
tmpstr += ", padding=" + str(self.padding)
|
|
tmpstr += ", dilation=" + str(self.dilation)
|
|
tmpstr += ", groups=" + str(self.groups)
|
|
tmpstr += ", deformable_groups=" + str(self.deformable_groups)
|
|
tmpstr += ", bias=" + str(self.with_bias)
|
|
return tmpstr
|
|
|
|
|
|
try:
|
|
from detectron2 import _C
|
|
except ImportError:
|
|
|
|
_msg = "detectron2 is not compiled successfully, please build following the instructions!"
|
|
_args = ("detectron2._C", _msg)
|
|
DeformConv = create_dummy_class("DeformConv", *_args)
|
|
ModulatedDeformConv = create_dummy_class("ModulatedDeformConv", *_args)
|
|
deform_conv = create_dummy_func("deform_conv", *_args)
|
|
modulated_deform_conv = create_dummy_func("modulated_deform_conv", *_args)
|
|
|