|
import spaces |
|
import gradio as gr |
|
import apply_net |
|
|
|
import os |
|
import sys |
|
import cv2 |
|
|
|
sys.path.append('./') |
|
import numpy as np |
|
import argparse |
|
|
|
import torch |
|
import torchvision |
|
import pytorch_lightning |
|
from torch import autocast |
|
from torchvision import transforms |
|
from pytorch_lightning import seed_everything |
|
|
|
from einops import rearrange |
|
from functools import partial |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
from typing import List |
|
import matplotlib.pyplot as plt |
|
from torchvision.transforms.functional import to_pil_image |
|
from utils_mask import get_mask_location |
|
from preprocess.humanparsing.run_parsing import Parsing |
|
from preprocess.openpose.run_openpose import OpenPose |
|
from ldm.util import instantiate_from_config, get_obj_from_str |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser(description="Script for demo model") |
|
parser.add_argument("-b", "--base", type=str, default=r"configs/test_vitonhd.yaml") |
|
parser.add_argument("-c", "--ckpt", type=str, default=r"ckpt/hitonhd.ckpt") |
|
parser.add_argument("-s", "--seed", type=str, default=42) |
|
parser.add_argument("-d", "--ddim", type=str, default=16) |
|
opt = parser.parse_args() |
|
|
|
seed_everything(opt.seed) |
|
config = OmegaConf.load(f"{opt.base}") |
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
|
|
model = instantiate_from_config(config.model) |
|
model.load_state_dict(torch.hub.load_state_dict_from_url("https://huggingface.co/basso4/hitonhd/resolve/main/hitonhd.ckpt")["state_dict"], strict=False) |
|
model.cuda() |
|
model.eval() |
|
model = model.to(device) |
|
sampler = DDIMSampler(model) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
precision_scope = autocast |
|
|
|
|
|
@spaces.GPU |
|
def start_tryon(dict,garm_img): |
|
|
|
human_img = dict['background'].convert("RGB").resize((768,1024)) |
|
|
|
|
|
tensor_transfrom = transforms.Compose( |
|
[ |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
parsing_model = Parsing(0) |
|
openose_model = OpenPose(0) |
|
openose_model.preprocessor.body_estimation.model.to(device) |
|
|
|
keypoints = openose_model(human_img.resize((384,512))) |
|
model_parse, _ = parsing_model(human_img.resize((384,512))) |
|
mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints) |
|
mask_cv = mask |
|
mask = mask.resize((768, 1024)) |
|
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img) |
|
mask_gray = to_pil_image((mask_gray+1.0)/2.0) |
|
|
|
|
|
human_img_arg = _apply_exif_orientation(human_img.resize((384,512))) |
|
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR") |
|
args = apply_net.create_argument_parser().parse_args(('show', |
|
'./configs/configs_densepose/densepose_rcnn_R_50_FPN_s1x.yaml', |
|
'https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl', |
|
'dp_segm', '-v', |
|
'--opts', |
|
'MODEL.DEVICE', |
|
'cuda')) |
|
|
|
pose_img = args.func(args,human_img_arg) |
|
pose_img = pose_img[:,:,::-1] |
|
pose_img = Image.fromarray(pose_img).resize((768,1024)) |
|
|
|
|
|
human_img = human_img.convert("RGB").resize((512, 512)) |
|
human_img = torchvision.transforms.ToTensor()(human_img) |
|
|
|
garm_img = garm_img.convert("RGB").resize((224, 224)) |
|
garm_img = torchvision.transforms.ToTensor()(garm_img) |
|
|
|
mask = mask.convert("L").resize((512,512)) |
|
mask = torchvision.transforms.ToTensor()(mask) |
|
mask = 1-mask |
|
|
|
pose_img = pose_img.convert("RGB").resize((512, 512)) |
|
pose_img = torchvision.transforms.ToTensor()(pose_img) |
|
|
|
|
|
human_img = torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(human_img) |
|
garm_img = torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073), |
|
(0.26862954, 0.26130258, 0.27577711))(garm_img) |
|
pose_img = torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(pose_img) |
|
|
|
|
|
inpaint = human_img * mask |
|
hint = torchvision.transforms.Resize((512, 512))(garm_img) |
|
hint = torch.cat((hint, pose_img), dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
with precision_scope("cuda"): |
|
|
|
inpaint = inpaint.unsqueeze(0).to(torch.float16).to(device) |
|
reference = garm_img.unsqueeze(0).to(torch.float16).to(device) |
|
mask = mask.unsqueeze(0).to(torch.float16).to(device) |
|
hint = hint.unsqueeze(0).to(torch.float16).to(device) |
|
truth = human_img.unsqueeze(0).to(torch.float16).to(device) |
|
|
|
|
|
encoder_posterior_inpaint = model.first_stage_model.encode(inpaint) |
|
z_inpaint = model.scale_factor * (encoder_posterior_inpaint.sample()).detach() |
|
mask_resize = torchvision.transforms.Resize([z_inpaint.shape[-2],z_inpaint.shape[-1]])(mask) |
|
test_model_kwargs = {} |
|
test_model_kwargs['inpaint_image'] = z_inpaint |
|
test_model_kwargs['inpaint_mask'] = mask_resize |
|
shape = (model.channels, model.image_size, model.image_size) |
|
|
|
|
|
samples, _ = sampler.sample(S=opt.ddim, |
|
batch_size=1, |
|
shape=shape, |
|
pose=hint, |
|
conditioning=reference, |
|
verbose=False, |
|
eta=0, |
|
test_model_kwargs=test_model_kwargs) |
|
samples = 1. / model.scale_factor * samples |
|
x_samples = model.first_stage_model.decode(samples[:,:4,:,:]) |
|
|
|
x_samples_ddim = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0) |
|
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy() |
|
x_checked_image=x_samples_ddim |
|
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2) |
|
|
|
x_checked_image_torch = torch.nn.functional.interpolate(x_checked_image_torch.float(), size=[512,384]) |
|
|
|
|
|
|
|
dict = dict['background'].convert("RGB").resize((384, 512)) |
|
dict = np.array(dict) |
|
dict = cv2.cvtColor(dict, cv2.COLOR_RGB2BGR) |
|
|
|
|
|
img_cv = rearrange(x_checked_image_torch[0], 'c h w -> h w c').cpu().numpy() |
|
img_cv = (img_cv * 255).astype(np.uint8) |
|
img_cv = cv2.cvtColor(img_cv, cv2.COLOR_RGB2BGR) |
|
|
|
|
|
mask_cv = mask_cv.convert("L").resize((384,512)) |
|
mask_cv = np.array(mask_cv) |
|
mask_cv = 255-mask_cv |
|
|
|
img_C = cv2.seamlessClone(dict, img_cv, mask_cv, (192,256), cv2.NORMAL_CLONE) |
|
img_C = cv2.cvtColor(img_C, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
return img_C, mask_gray |
|
|
|
|
|
example_path = os.path.join(os.path.dirname(__file__), 'example') |
|
|
|
garm_list = os.listdir(os.path.join(example_path,"cloth")) |
|
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list] |
|
|
|
human_list = os.listdir(os.path.join(example_path,"human")) |
|
human_list_path = [os.path.join(example_path,"human",human) for human in human_list] |
|
|
|
human_ex_list = [] |
|
for ex_human in human_list_path: |
|
ex_dict= {} |
|
ex_dict['background'] = ex_human |
|
ex_dict['layers'] = None |
|
ex_dict['composite'] = None |
|
human_ex_list.append(ex_dict) |
|
|
|
|
|
|
|
|
|
image_blocks = gr.Blocks().queue() |
|
with image_blocks as demo: |
|
gr.Markdown("## FPT_VTON πππ") |
|
gr.Markdown("Virtual Try-on with your image and garment image") |
|
with gr.Row(): |
|
with gr.Column(): |
|
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human Picture or use Examples below', interactive=True) |
|
|
|
example = gr.Examples( |
|
inputs=imgs, |
|
examples_per_page=10, |
|
examples=human_list_path |
|
) |
|
|
|
with gr.Column(): |
|
garm_img = gr.Image(label="Garment", sources='upload', type="pil") |
|
|
|
example = gr.Examples( |
|
inputs=garm_img, |
|
examples_per_page=8, |
|
examples=garm_list_path |
|
) |
|
|
|
with gr.Column(): |
|
image_out_c = gr.Image(label="Output", elem_id="output-img",show_download_button=True) |
|
try_button = gr.Button(value="Try-on") |
|
|
|
|
|
|
|
|
|
with gr.Column(): |
|
masked_img = gr.Image(label="Masked image output", elem_id="masked_img", show_download_button=True) |
|
|
|
|
|
try_button.click(fn=start_tryon, inputs=[imgs,garm_img], outputs=[image_out_c,masked_img], api_name='tryon') |
|
|
|
|
|
|
|
image_blocks.launch() |
|
|