Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,36 @@
|
|
1 |
-
import
|
2 |
-
os
|
3 |
-
|
4 |
import gradio as gr
|
5 |
-
import torch
|
|
|
|
|
|
|
6 |
import numpy as np
|
7 |
-
|
|
|
8 |
from detectron2.engine import DefaultPredictor
|
9 |
from detectron2.config import get_cfg
|
10 |
-
from detectron2 import
|
11 |
-
from detectron2.
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import sys, os, distutils.core
|
3 |
+
sys.path.insert(0, os.path.abspath('./detectron2'))
|
4 |
import gradio as gr
|
5 |
+
import torch, detectron2
|
6 |
+
import pandas as pd
|
7 |
+
from detectron2.utils.logger import setup_logger
|
8 |
+
setup_logger()
|
9 |
import numpy as np
|
10 |
+
# import os, json, cv2, random
|
11 |
+
from detectron2 import model_zoo
|
12 |
from detectron2.engine import DefaultPredictor
|
13 |
from detectron2.config import get_cfg
|
14 |
+
# from detectron2.utils.visualizer import Visualizer
|
15 |
+
# from detectron2.data import MetadataCatalog, DatasetCatalog
|
16 |
+
import numpy
|
17 |
+
# import torch.optim as optim
|
18 |
+
import torch.nn as nn
|
19 |
+
# from tqdm.notebook import tqdm, trange
|
20 |
+
from torchvision import transforms,models #, datasets
|
21 |
+
SEED = 1234
|
22 |
+
|
23 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
+
num_classes = 15
|
25 |
+
criterion = nn.CrossEntropyLoss()
|
26 |
+
|
27 |
+
|
28 |
+
model = models.resnet152(pretrained=True)
|
29 |
+
for param in model.parameters():
|
30 |
+
param.require_grad = False
|
31 |
+
num_ftrs = model.fc.in_features
|
32 |
+
model.fc = nn.Linear(num_ftrs, num_classes)
|
33 |
+
model = model.to(device)
|
34 |
|
35 |
|
36 |
|