import numpy as np test_cases = [ { "predictions": [np.array(a) for a in [ [1,1,10,20,30,40,0.85], [1,2,50,60,70,80,0.92], [1,3,80,90,100,110,0.75], [2,1,15,25,35,45,0.78], [2,2,55,65,75,85,0.95], [3,1,20,30,40,50,0.88], [3,2,60,70,80,90,0.82], [4,1,25,35,45,55,0.91], [4,2,65,75,85,95,0.89] ]], "references": [np.array(a) for a in [ [1, 1, 10, 20, 30, 40], [1, 2, 50, 60, 70, 80], [1, 3, 85, 95, 105, 115], [2, 1, 15, 25, 35, 45], [2, 2, 55, 65, 75, 85], [3, 1, 20, 30, 40, 50], [3, 2, 60, 70, 80, 90], [4, 1, 25, 35, 45, 55], [5, 1, 30, 40, 50, 60], [5, 2, 70, 80, 90, 100] ]], "result": {'idf1': {0: 0.8421052631578947}, 'idp': {0: 0.8888888888888888}, 'idr': {0: 0.8}, 'recall': {0: 0.8}, 'precision': {0: 0.8888888888888888}, 'num_unique_objects': {0: 3}, 'mostly_tracked': {0: 2}, 'partially_tracked': {0: 1}, 'mostly_lost': {0: 0}, 'num_false_positives': {0: 1}, 'num_misses': {0: 2}, 'num_switches': {0: 0}, 'num_fragmentations': {0: 0}, 'mota': {0: 0.7}, 'motp': {0: 0.02981870229007634}, 'num_transfer': {0: 0}, 'num_ascend': {0: 0}, 'num_migrate': {0: 0}} }, ]