import gradio as gr import subprocess import os from huggingface_hub import HfApi, snapshot_download from gradio_huggingfacehub_search import HuggingfaceHubSearch from apscheduler.schedulers.background import BackgroundScheduler HF_TOKEN = os.environ.get("HF_TOKEN") def process_model( model_id: str, file_path: str, key: str, value: str, oauth_token: gr.OAuthToken | None, ): if oauth_token.token is None: raise ValueError("You must be logged in to use gguf-metadata-updater") api = HfApi(token=oauth_token.token) MODEL_NAME = model_id.split("/")[-1] FILE_NAME = file_path.split("/")[-1] api.snapshot_download( repo_id=model_id, allow_patterns=file_path, local_dir=f"{MODEL_NAME}", ) print("Model downloaded successully!") metadata_update = f"python llama.cpp/gguf-py/scripts/gguf_set_metadata.py {MODEL_NAME}/{file_path} {key} {value}" subprocess.run(metadata_update, shell=True) print(f"Model metadata {key} updated to {value} successully!") # Upload gguf files api.upload_folder( folder_path=MODEL_NAME, repo_id=model_id, allow_patterns=["*.gguf"], ) print("Uploaded successfully!") return "Processing complete." with gr.Blocks() as demo: gr.Markdown("You must be logged in to use GGUF metadata updated.") gr.LoginButton(min_width=250) model_id = HuggingfaceHubSearch( label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model", ) file_path = gr.Textbox(lines=1, label="File path") key = gr.Textbox(lines=1, label="Key") value = gr.Textbox(lines=1, label="Value") iface = gr.Interface( fn=process_model, inputs=[model_id, file_path, key, value], outputs=[ gr.Markdown(label="output"), gr.Image(show_label=False), ], title="Update metadata for a GGUF file", description="The space takes an HF repo, a file within that repo, a metadata key, and new metadata value to update it to.", api_name=False, ) def restart_space(): HfApi().restart_space( repo_id="bartowski/gguf-metadata-updated", token=HF_TOKEN, factory_reboot=True ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=21600) scheduler.start() # Launch the interface demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)