import gradio as gr import subprocess from huggingface_hub import HfApi, snapshot_download api = HfApi() def process_model(model_id: str, file_path: str, key: str, value: str, hf_token): MODEL_NAME = model_id.split("/")[-1] FILE_NAME = file_path.split("/")[-1] snapshot_download( repo_id=model_id, allow_patterns=file_path, local_dir=f"{MODEL_NAME}", ) print("Model downloaded successully!") metadata_update = f"python llama.cpp/gguf-py/scripts/gguf_set_metadata.py {MODEL_NAME}/{file_path} {key} {value}" subprocess.run(metadata_update, shell=True) print(f"Model metadata {key} updated to {value} successully!") # Upload gguf files api.upload_folder( folder_path=MODEL_NAME, repo_id=model_id, allow_patterns=["*.gguf", "$.md"], token=hf_token, ) print("Uploaded successfully!") return "Processing complete." # Create Gradio interface iface = gr.Interface( fn=process_model, inputs=[ gr.Textbox(lines=1, label="Model ID"), gr.Textbox(lines=1, label="File path"), gr.Textbox(lines=1, label="Key"), gr.Textbox(lines=1, label="Value"), gr.Textbox(lines=1, label="Token"), ], outputs="text", ) # Launch the interface iface.launch(debug=True)