|
|
|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from sklearn.linear_model import LinearRegression |
|
from sklearn.ensemble import RandomForestRegressor |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.model_selection import train_test_split |
|
|
|
|
|
st.set_page_config(page_title="Data Analysis Platform", layout="wide") |
|
|
|
|
|
if 'data' not in st.session_state: |
|
|
|
np.random.seed(42) |
|
dates = pd.date_range('2023-01-01', periods=100, freq='D') |
|
st.session_state.data = pd.DataFrame({ |
|
'date': dates, |
|
'sales': np.random.normal(1000, 200, 100), |
|
'visitors': np.random.normal(500, 100, 100), |
|
'conversion_rate': np.random.uniform(0.01, 0.05, 100), |
|
'customer_satisfaction': np.random.normal(4.2, 0.5, 100), |
|
'region': np.random.choice(['North', 'South', 'East', 'West'], 100) |
|
}) |
|
|
|
|
|
st.sidebar.title("Data Analytics Platform") |
|
page = st.sidebar.radio("Navigation", ["Home", "Data Explorer", "Visualization", "Predictions"]) |
|
|
|
|
|
if page == "Home": |
|
st.title("Data Analysis Platform") |
|
st.markdown(""" |
|
Welcome to the Data Analysis Platform. Explore your data with powerful |
|
visualizations and machine learning insights. |
|
""") |
|
|
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
st.subheader("Upload Your Dataset") |
|
uploaded_file = st.file_uploader("Choose a CSV file", type="csv") |
|
if uploaded_file is not None: |
|
try: |
|
st.session_state.data = pd.read_csv(uploaded_file) |
|
st.success("Data uploaded successfully!") |
|
except Exception as e: |
|
st.error(f"Error uploading file: {e}") |
|
|
|
with col2: |
|
st.subheader("Dataset Overview") |
|
st.write(st.session_state.data.describe()) |
|
|
|
|
|
elif page == "Data Explorer": |
|
st.title("Data Explorer") |
|
|
|
|
|
st.subheader("Dataset Summary") |
|
st.write(f"Shape: {st.session_state.data.shape[0]} rows, {st.session_state.data.shape[1]} columns") |
|
|
|
|
|
st.subheader("Data Preview") |
|
st.dataframe(st.session_state.data.head()) |
|
|
|
|
|
st.subheader("Column Analysis") |
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
column = st.selectbox("Select column to analyze:", st.session_state.data.columns) |
|
|
|
with col2: |
|
if pd.api.types.is_numeric_dtype(st.session_state.data[column]): |
|
analysis_type = st.selectbox( |
|
"Analysis type:", |
|
["Distribution", "Time Series"] if "date" in column.lower() else ["Distribution"] |
|
) |
|
else: |
|
analysis_type = st.selectbox("Analysis type:", ["Value Counts"]) |
|
|
|
|
|
if pd.api.types.is_numeric_dtype(st.session_state.data[column]): |
|
st.write(f"**Min:** {st.session_state.data[column].min():.2f}") |
|
st.write(f"**Max:** {st.session_state.data[column].max():.2f}") |
|
st.write(f"**Mean:** {st.session_state.data[column].mean():.2f}") |
|
st.write(f"**Median:** {st.session_state.data[column].median():.2f}") |
|
st.write(f"**Std Dev:** {st.session_state.data[column].std():.2f}") |
|
|
|
fig, ax = plt.subplots(figsize=(10, 6)) |
|
sns.histplot(st.session_state.data[column], ax=ax, kde=True) |
|
ax.set_title(f"Distribution of {column}") |
|
st.pyplot(fig) |
|
else: |
|
value_counts = st.session_state.data[column].value_counts() |
|
st.write(f"**Unique Values:** {len(value_counts)}") |
|
st.write(f"**Most Common:** {value_counts.index[0]} ({value_counts.iloc[0]} occurrences)") |
|
|
|
fig, ax = plt.subplots(figsize=(10, 6)) |
|
value_counts.plot(kind='bar', ax=ax) |
|
ax.set_title(f"Value counts for {column}") |
|
st.pyplot(fig) |
|
|
|
|
|
elif page == "Visualization": |
|
st.title("Data Visualization") |
|
|
|
chart_type = st.selectbox( |
|
"Select chart type:", |
|
["Bar Chart", "Line Chart", "Scatter Plot", "Heatmap"] |
|
) |
|
|
|
if chart_type in ["Bar Chart", "Line Chart"]: |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
x_column = st.selectbox("X-axis:", st.session_state.data.columns) |
|
with col2: |
|
y_column = st.selectbox("Y-axis:", |
|
[col for col in st.session_state.data.columns |
|
if pd.api.types.is_numeric_dtype(st.session_state.data[col])]) |
|
|
|
|
|
if not pd.api.types.is_numeric_dtype(st.session_state.data[x_column]): |
|
agg_data = st.session_state.data.groupby(x_column)[y_column].mean().reset_index() |
|
|
|
fig, ax = plt.subplots(figsize=(10, 6)) |
|
if chart_type == "Bar Chart": |
|
sns.barplot(x=x_column, y=y_column, data=agg_data, ax=ax) |
|
else: |
|
sns.lineplot(x=x_column, y=y_column, data=agg_data, ax=ax, marker='o') |
|
ax.set_title(f"{y_column} by {x_column}") |
|
st.pyplot(fig) |
|
else: |
|
fig, ax = plt.subplots(figsize=(10, 6)) |
|
if chart_type == "Bar Chart": |
|
sns.barplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax) |
|
else: |
|
sns.lineplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax) |
|
ax.set_title(f"{y_column} vs {x_column}") |
|
st.pyplot(fig) |
|
|
|
elif chart_type == "Scatter Plot": |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
x_column = st.selectbox("X-axis:", |
|
[col for col in st.session_state.data.columns |
|
if pd.api.types.is_numeric_dtype(st.session_state.data[col])]) |
|
with col2: |
|
y_column = st.selectbox("Y-axis:", |
|
[col for col in st.session_state.data.columns |
|
if pd.api.types.is_numeric_dtype(st.session_state.data[col]) and col != x_column]) |
|
|
|
fig, ax = plt.subplots(figsize=(10, 6)) |
|
sns.scatterplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax) |
|
ax.set_title(f"{y_column} vs {x_column}") |
|
st.pyplot(fig) |
|
|
|
elif chart_type == "Heatmap": |
|
numeric_cols = st.session_state.data.select_dtypes(include=['number']).columns.tolist() |
|
correlation = st.session_state.data[numeric_cols].corr() |
|
|
|
fig, ax = plt.subplots(figsize=(10, 8)) |
|
sns.heatmap(correlation, annot=True, cmap='coolwarm', ax=ax) |
|
ax.set_title("Correlation Heatmap") |
|
st.pyplot(fig) |
|
|
|
|
|
elif page == "Predictions": |
|
st.title("ML Predictions") |
|
|
|
numeric_cols = st.session_state.data.select_dtypes(include=['number']).columns.tolist() |
|
|
|
st.subheader("Train a Model") |
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
target_column = st.selectbox("Target variable:", numeric_cols) |
|
|
|
with col2: |
|
model_type = st.selectbox("Model type:", ["Linear Regression", "Random Forest"]) |
|
|
|
|
|
feature_cols = [col for col in numeric_cols if col != target_column] |
|
selected_features = st.multiselect("Select features:", feature_cols, default=feature_cols) |
|
|
|
if st.button("Train Model"): |
|
if len(selected_features) > 0: |
|
|
|
X = st.session_state.data[selected_features] |
|
y = st.session_state.data[target_column] |
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
scaler = StandardScaler() |
|
X_train_scaled = scaler.fit_transform(X_train) |
|
X_test_scaled = scaler.transform(X_test) |
|
|
|
|
|
if model_type == "Linear Regression": |
|
model = LinearRegression() |
|
else: |
|
model = RandomForestRegressor(n_estimators=100, random_state=42) |
|
|
|
model.fit(X_train_scaled, y_train) |
|
|
|
|
|
train_score = model.score(X_train_scaled, y_train) |
|
test_score = model.score(X_test_scaled, y_test) |
|
|
|
st.session_state.model = model |
|
st.session_state.scaler = scaler |
|
st.session_state.features = selected_features |
|
|
|
st.success("Model trained successfully!") |
|
st.write(f"Training R² score: {train_score:.4f}") |
|
st.write(f"Testing R² score: {test_score:.4f}") |
|
|
|
|
|
if model_type == "Random Forest": |
|
importance = pd.DataFrame({ |
|
'Feature': selected_features, |
|
'Importance': model.feature_importances_ |
|
}).sort_values('Importance', ascending=False) |
|
|
|
fig, ax = plt.subplots(figsize=(10, 6)) |
|
sns.barplot(x='Importance', y='Feature', data=importance, ax=ax) |
|
ax.set_title("Feature Importance") |
|
st.pyplot(fig) |
|
else: |
|
st.error("Please select at least one feature") |
|
|
|
|
|
st.subheader("Make Predictions") |
|
if 'model' in st.session_state: |
|
input_data = {} |
|
|
|
|
|
for feature in st.session_state.features: |
|
min_val = float(st.session_state.data[feature].min()) |
|
max_val = float(st.session_state.data[feature].max()) |
|
mean_val = float(st.session_state.data[feature].mean()) |
|
|
|
input_data[feature] = st.slider( |
|
f"Input {feature}:", |
|
min_value=min_val, |
|
max_value=max_val, |
|
value=mean_val |
|
) |
|
|
|
if st.button("Predict"): |
|
|
|
input_df = pd.DataFrame([input_data]) |
|
input_scaled = st.session_state.scaler.transform(input_df) |
|
|
|
|
|
prediction = st.session_state.model.predict(input_scaled)[0] |
|
|
|
st.success(f"Predicted {target_column}: {prediction:.2f}") |
|
else: |
|
st.info("Train a model first to make predictions") |