python / app.py
bangaboy's picture
Create app.py
2a70c18 verified
# app.py
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
# Page configuration
st.set_page_config(page_title="Data Analysis Platform", layout="wide")
# Initialize session state
if 'data' not in st.session_state:
# Create sample data
np.random.seed(42)
dates = pd.date_range('2023-01-01', periods=100, freq='D')
st.session_state.data = pd.DataFrame({
'date': dates,
'sales': np.random.normal(1000, 200, 100),
'visitors': np.random.normal(500, 100, 100),
'conversion_rate': np.random.uniform(0.01, 0.05, 100),
'customer_satisfaction': np.random.normal(4.2, 0.5, 100),
'region': np.random.choice(['North', 'South', 'East', 'West'], 100)
})
# Sidebar for navigation
st.sidebar.title("Data Analytics Platform")
page = st.sidebar.radio("Navigation", ["Home", "Data Explorer", "Visualization", "Predictions"])
# Home page
if page == "Home":
st.title("Data Analysis Platform")
st.markdown("""
Welcome to the Data Analysis Platform. Explore your data with powerful
visualizations and machine learning insights.
""")
col1, col2 = st.columns(2)
with col1:
st.subheader("Upload Your Dataset")
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
if uploaded_file is not None:
try:
st.session_state.data = pd.read_csv(uploaded_file)
st.success("Data uploaded successfully!")
except Exception as e:
st.error(f"Error uploading file: {e}")
with col2:
st.subheader("Dataset Overview")
st.write(st.session_state.data.describe())
# Data Explorer page
elif page == "Data Explorer":
st.title("Data Explorer")
# Data summary
st.subheader("Dataset Summary")
st.write(f"Shape: {st.session_state.data.shape[0]} rows, {st.session_state.data.shape[1]} columns")
# Show first few rows
st.subheader("Data Preview")
st.dataframe(st.session_state.data.head())
# Column analysis
st.subheader("Column Analysis")
col1, col2 = st.columns(2)
with col1:
column = st.selectbox("Select column to analyze:", st.session_state.data.columns)
with col2:
if pd.api.types.is_numeric_dtype(st.session_state.data[column]):
analysis_type = st.selectbox(
"Analysis type:",
["Distribution", "Time Series"] if "date" in column.lower() else ["Distribution"]
)
else:
analysis_type = st.selectbox("Analysis type:", ["Value Counts"])
# Display analysis
if pd.api.types.is_numeric_dtype(st.session_state.data[column]):
st.write(f"**Min:** {st.session_state.data[column].min():.2f}")
st.write(f"**Max:** {st.session_state.data[column].max():.2f}")
st.write(f"**Mean:** {st.session_state.data[column].mean():.2f}")
st.write(f"**Median:** {st.session_state.data[column].median():.2f}")
st.write(f"**Std Dev:** {st.session_state.data[column].std():.2f}")
fig, ax = plt.subplots(figsize=(10, 6))
sns.histplot(st.session_state.data[column], ax=ax, kde=True)
ax.set_title(f"Distribution of {column}")
st.pyplot(fig)
else:
value_counts = st.session_state.data[column].value_counts()
st.write(f"**Unique Values:** {len(value_counts)}")
st.write(f"**Most Common:** {value_counts.index[0]} ({value_counts.iloc[0]} occurrences)")
fig, ax = plt.subplots(figsize=(10, 6))
value_counts.plot(kind='bar', ax=ax)
ax.set_title(f"Value counts for {column}")
st.pyplot(fig)
# Visualization page
elif page == "Visualization":
st.title("Data Visualization")
chart_type = st.selectbox(
"Select chart type:",
["Bar Chart", "Line Chart", "Scatter Plot", "Heatmap"]
)
if chart_type in ["Bar Chart", "Line Chart"]:
col1, col2 = st.columns(2)
with col1:
x_column = st.selectbox("X-axis:", st.session_state.data.columns)
with col2:
y_column = st.selectbox("Y-axis:",
[col for col in st.session_state.data.columns
if pd.api.types.is_numeric_dtype(st.session_state.data[col])])
# Aggregation for categorical x-axis
if not pd.api.types.is_numeric_dtype(st.session_state.data[x_column]):
agg_data = st.session_state.data.groupby(x_column)[y_column].mean().reset_index()
fig, ax = plt.subplots(figsize=(10, 6))
if chart_type == "Bar Chart":
sns.barplot(x=x_column, y=y_column, data=agg_data, ax=ax)
else: # Line chart
sns.lineplot(x=x_column, y=y_column, data=agg_data, ax=ax, marker='o')
ax.set_title(f"{y_column} by {x_column}")
st.pyplot(fig)
else:
fig, ax = plt.subplots(figsize=(10, 6))
if chart_type == "Bar Chart":
sns.barplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax)
else: # Line chart
sns.lineplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax)
ax.set_title(f"{y_column} vs {x_column}")
st.pyplot(fig)
elif chart_type == "Scatter Plot":
col1, col2 = st.columns(2)
with col1:
x_column = st.selectbox("X-axis:",
[col for col in st.session_state.data.columns
if pd.api.types.is_numeric_dtype(st.session_state.data[col])])
with col2:
y_column = st.selectbox("Y-axis:",
[col for col in st.session_state.data.columns
if pd.api.types.is_numeric_dtype(st.session_state.data[col]) and col != x_column])
fig, ax = plt.subplots(figsize=(10, 6))
sns.scatterplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax)
ax.set_title(f"{y_column} vs {x_column}")
st.pyplot(fig)
elif chart_type == "Heatmap":
numeric_cols = st.session_state.data.select_dtypes(include=['number']).columns.tolist()
correlation = st.session_state.data[numeric_cols].corr()
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(correlation, annot=True, cmap='coolwarm', ax=ax)
ax.set_title("Correlation Heatmap")
st.pyplot(fig)
# Predictions page
elif page == "Predictions":
st.title("ML Predictions")
numeric_cols = st.session_state.data.select_dtypes(include=['number']).columns.tolist()
st.subheader("Train a Model")
col1, col2 = st.columns(2)
with col1:
target_column = st.selectbox("Target variable:", numeric_cols)
with col2:
model_type = st.selectbox("Model type:", ["Linear Regression", "Random Forest"])
# Select features
feature_cols = [col for col in numeric_cols if col != target_column]
selected_features = st.multiselect("Select features:", feature_cols, default=feature_cols)
if st.button("Train Model"):
if len(selected_features) > 0:
# Prepare data
X = st.session_state.data[selected_features]
y = st.session_state.data[target_column]
# Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Scale features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Train model
if model_type == "Linear Regression":
model = LinearRegression()
else:
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train_scaled, y_train)
# Evaluate
train_score = model.score(X_train_scaled, y_train)
test_score = model.score(X_test_scaled, y_test)
st.session_state.model = model
st.session_state.scaler = scaler
st.session_state.features = selected_features
st.success("Model trained successfully!")
st.write(f"Training R² score: {train_score:.4f}")
st.write(f"Testing R² score: {test_score:.4f}")
# Feature importance for Random Forest
if model_type == "Random Forest":
importance = pd.DataFrame({
'Feature': selected_features,
'Importance': model.feature_importances_
}).sort_values('Importance', ascending=False)
fig, ax = plt.subplots(figsize=(10, 6))
sns.barplot(x='Importance', y='Feature', data=importance, ax=ax)
ax.set_title("Feature Importance")
st.pyplot(fig)
else:
st.error("Please select at least one feature")
# Make predictions section
st.subheader("Make Predictions")
if 'model' in st.session_state:
input_data = {}
# Create input fields for each feature
for feature in st.session_state.features:
min_val = float(st.session_state.data[feature].min())
max_val = float(st.session_state.data[feature].max())
mean_val = float(st.session_state.data[feature].mean())
input_data[feature] = st.slider(
f"Input {feature}:",
min_value=min_val,
max_value=max_val,
value=mean_val
)
if st.button("Predict"):
# Prepare input for prediction
input_df = pd.DataFrame([input_data])
input_scaled = st.session_state.scaler.transform(input_df)
# Make prediction
prediction = st.session_state.model.predict(input_scaled)[0]
st.success(f"Predicted {target_column}: {prediction:.2f}")
else:
st.info("Train a model first to make predictions")