new_updated / app.py
bangaboy's picture
Update app.py
7033de3 verified
import streamlit as st
import google.generativeai as genai
from PIL import Image
import fitz # PyMuPDF
from docx import Document
import json
from pathlib import Path
from datetime import datetime
import re
import pytesseract
import io
def extract_text_from_pdf(pdf_file):
"""Extract text from uploaded PDF file."""
text_content = []
try:
pdf_bytes = pdf_file.read()
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
for page_num in range(len(doc)):
page = doc[page_num]
text_content.append(page.get_text())
return "\n".join(text_content)
except Exception as e:
st.error(f"Error in PDF extraction: {str(e)}")
return ""
def extract_text_from_docx(docx_file):
"""Extract text from uploaded DOCX file."""
try:
doc = Document(docx_file)
text_content = []
for paragraph in doc.paragraphs:
text_content.append(paragraph.text)
return "\n".join(text_content)
except Exception as e:
st.error(f"Error in DOCX extraction: {str(e)}")
return ""
def parse_date(date_str):
"""Parse date from various formats."""
try:
# Handle 'Present' or 'Current'
if date_str.lower() in ['present', 'current', 'now']:
return datetime.now()
date_str = date_str.strip()
formats = [
'%Y', '%b %Y', '%B %Y', '%m/%Y', '%m-%Y',
'%Y/%m', '%Y-%m'
]
for fmt in formats:
try:
return datetime.strptime(date_str, fmt)
except ValueError:
continue
year_match = re.search(r'\b20\d{2}\b', date_str)
if year_match:
return datetime.strptime(year_match.group(), '%Y')
return None
except Exception:
return None
def calculate_experience(work_history):
"""Calculate total years of experience from work history."""
total_experience = 0
current_year = datetime.now().year
for job in work_history:
duration = job.get('duration', '')
if not duration:
continue
parts = re.split(r'\s*-\s*|\s+to\s+', duration)
if len(parts) != 2:
continue
start_date = parse_date(parts[0])
end_date = parse_date(parts[1])
if start_date and end_date:
years = (end_date.year - start_date.year) + \
(end_date.month - start_date.month) / 12
total_experience += max(0, years)
return round(total_experience, 1)
def parse_resume(file_uploaded, api_key):
"""Parse resume and extract information."""
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-1.5-pro')
prompt = """Extract the following information from this resume:
1. Summarize the following resume in 100 words, focusing on key skills, experience, and qualifications
2. Full Name
3. Email Address
4. Phone Number
5. Education History (including degree, institution, graduation year, and field of study)
6. Companies worked at with positions and EXACT duration (e.g., "Jan 2020 - Present" or "2018-2020")
7. Skills
8. LinkedIn Profile URL
Return the information in this JSON format:
{
"summary": "",
"name": "",
"email": "",
"phone": "",
"education": [
{
"degree": "",
"institution": "",
"year": "",
"field": "",
"gpa": ""
}
],
"work_experience": [
{
"company": "",
"position": "",
"duration": ""
}
],
"skills": [],
"linkedin": ""
}
For skills include tools and technologies in output if present any in resume.
For work experience durations, please specify exact dates in format: "MMM YYYY - MMM YYYY" or "YYYY - Present" , please return in one order either in ascending or descending.
Only return the JSON object, nothing else. If any field is not found, leave it empty."""
try:
file_extension = Path(file_uploaded.name).suffix.lower()
if file_extension == '.pdf':
text_content = extract_text_from_pdf(file_uploaded)
elif file_extension in ['.docx', '.doc']:
text_content = extract_text_from_docx(file_uploaded)
elif file_extension in ['.jpg', '.jpeg', '.png']:
image = Image.open(file_uploaded)
text_content = pytesseract.image_to_string(image)
else:
st.error(f"Unsupported file format: {file_extension}")
return None
response = model.generate_content(f"{prompt}\n\nResume Text:\n{text_content}")
try:
response_text = response.text
json_start = response_text.find('{')
json_end = response_text.rfind('}') + 1
json_str = response_text[json_start:json_end]
result = json.loads(json_str)
total_exp = calculate_experience(result.get('work_experience', []))
result['total_years_experience'] = total_exp
return result
except json.JSONDecodeError as e:
st.error(f"Error parsing response: {str(e)}")
return None
except Exception as e:
st.error(f"Error processing resume: {str(e)}")
return None
def format_education(edu):
"""Format education details for display."""
parts = []
if edu.get('degree'):
parts.append(edu['degree'])
if edu.get('field'):
parts.append(f"in {edu['field']}")
if edu.get('institution'):
parts.append(f"from {edu['institution']}")
if edu.get('year'):
parts.append(f"({edu['year']})")
if edu.get('gpa') and edu['gpa'].strip():
parts.append(f"- GPA: {edu['gpa']}")
return " ".join(parts)
def main():
st.title("Resume Parser")
st.write("Upload a resume (PDF, DOCX, or Image) to extract information")
# Get API key from secrets or user input
api_key = st.secrets["GEMINI_API_KEY"] if "GEMINI_API_KEY" in st.secrets else st.text_input("Enter Gemini API Key", type="password")
uploaded_file = st.file_uploader("Choose a resume file", type=["pdf", "docx", "doc", "jpg", "jpeg", "png"])
if uploaded_file and api_key:
with st.spinner('Analyzing resume...'):
result = parse_resume(uploaded_file, api_key)
if result:
st.subheader("Extracted Information")
# Display summary in a text area
st.text_area("Summary", result.get('summary', 'Not found'), height=100)
# Display personal information
col1, col2, col3 = st.columns(3)
with col1:
st.write("**Name:**", result.get('name', 'Not found'))
with col2:
st.write("**Email:**", result.get('email', 'Not found'))
with col3:
st.write("**Phone:**", result.get('phone', 'Not found'))
# Display total experience
total_exp = result.get('total_years_experience', 0)
exp_text = f"{total_exp:.1f} years" if total_exp >= 1 else f"{total_exp * 12:.0f} months"
st.write("**Total Experience:**", exp_text)
# Display education
st.subheader("Education")
if result.get('education'):
for edu in result['education']:
st.write(f"- {format_education(edu)}")
else:
st.write("No education information found")
# Display work experience
st.subheader("Work Experience")
if result.get('work_experience'):
for exp in result['work_experience']:
duration = f" ({exp.get('duration', 'Duration not specified')})" if exp.get('duration') else ""
st.write(f"- {exp.get('position', 'Role not found')} at {exp.get('company', 'Company not found')}{duration}")
else:
st.write("No work experience found")
# Display Skills
st.subheader("Skills:")
if result.get('skills'):
for skill in result['skills']:
st.write(f"- {skill}")
else:
st.write("- No skills found")
# Display LinkedIn profile
st.write("**LinkedIn Profile:**", result.get('linkedin', 'Not found'))
if __name__ == "__main__":
main()