import torch import pandas as pd from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification, TrainingArguments import gradio as gr from gradio.mix import Parallel, Series #import torch.nn.functional as F from datasets import load_dataset dataset = load_dataset("bananabot/engMollywoodSummaries") dataset device = "cuda" if torch.cuda.is_available() else "cpu" model_name = "EleutherAI/gpt-neo-125M" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name).to(device) max_length=123 input_txt = "This malayalam movie is about" n_steps = 8 input_ids = tokenizer(input_txt, return_tensors="pt")["input_ids"].to(device) output = model.generate(input_ids, max_length=max_length, num_beams=5, do_sample=True, no_repeat_ngram_size=2, temperature=1.37, top_k=69, top_p=0.96) print(tokenizer.decode(output[0])) generator = gr.Interface.load("models/EleutherAI/gpt-neo-125M") translator = gr.Interface.load("models/Helsinki-NLP/opus-mt-en-ml") gr.Series(generator, translator, inputs=gr.inputs.Textbox(lines=13, label="Input Text")).launch() # this demo generates text, then translates it to Malayalam, and outputs the final result.