#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging import os from pathlib import Path import shutil from itertools import groupby from tempfile import NamedTemporaryFile from typing import Tuple import numpy as np import pandas as pd import soundfile as sf from data_utils import ( create_zip, extract_fbank_features, filter_manifest_df, gen_config_yaml, gen_vocab, get_zip_manifest, load_df_from_tsv, save_df_to_tsv, cal_gcmvn_stats, ) import torch from torch.utils.data import Dataset from tqdm import tqdm from fairseq.data.audio.audio_utils import get_waveform, convert_waveform log = logging.getLogger(__name__) MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"] class MUSTC(Dataset): """ Create a Dataset for MuST-C. Each item is a tuple of the form: waveform, sample_rate, source utterance, target utterance, speaker_id, utterance_id """ SPLITS = ["train", "dev", "tst-COMMON", "tst-HE"] LANGUAGES = ["de", "es", "fr", "it", "nl", "pt", "ro", "ru", "hi", "bn"] def __init__(self, root: str, lang: str, split: str) -> None: assert split in self.SPLITS and lang in self.LANGUAGES _root = Path(root) / f"en-{lang}" / "data" / split wav_root, txt_root = _root / "wav", _root / "txt" assert _root.is_dir() and wav_root.is_dir() and txt_root.is_dir() # Load audio segments try: import yaml except ImportError: print("Please install PyYAML to load the MuST-C YAML files") with open(txt_root / f"{split}.yaml") as f: segments = yaml.load(f, Loader=yaml.BaseLoader) # Load source and target utterances for _lang in ["en", lang]: with open(txt_root / f"{split}.{_lang}") as f: utterances = [r.strip() for r in f] assert len(segments) == len(utterances) for i, u in enumerate(utterances): segments[i][_lang] = u # Gather info self.data = [] for wav_filename, _seg_group in groupby(segments, lambda x: x["wav"]): wav_path = wav_root / wav_filename sample_rate = sf.info(wav_path.as_posix()).samplerate seg_group = sorted(_seg_group, key=lambda x: x["offset"]) for i, segment in enumerate(seg_group): offset = int(float(segment["offset"]) * sample_rate) n_frames = int(float(segment["duration"]) * sample_rate) _id = f"{wav_path.stem}_{i}" self.data.append( ( wav_path.as_posix(), offset, n_frames, sample_rate, segment["en"], segment[lang], segment["speaker_id"], _id, ) ) def __getitem__( self, n: int ) -> Tuple[torch.Tensor, int, str, str, str, str]: wav_path, offset, n_frames, sr, src_utt, tgt_utt, spk_id, \ utt_id = self.data[n] waveform, _ = get_waveform(wav_path, frames=n_frames, start=offset) waveform = torch.from_numpy(waveform) return waveform, sr, src_utt, tgt_utt, spk_id, utt_id def __len__(self) -> int: return len(self.data) def process(args): root = Path(args.data_root).absolute() for lang in MUSTC.LANGUAGES: cur_root = root / f"en-{lang}" if not cur_root.is_dir(): print(f"{cur_root.as_posix()} does not exist. Skipped.") continue # Extract features audio_root = cur_root / ("flac" if args.use_audio_input else "fbank80") audio_root.mkdir(exist_ok=True) for split in MUSTC.SPLITS: print(f"Fetching split {split}...") dataset = MUSTC(root.as_posix(), lang, split) if args.use_audio_input: print("Converting audios...") for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset): tgt_sample_rate = 16_000 _wavform, _ = convert_waveform( waveform, sample_rate, to_mono=True, to_sample_rate=tgt_sample_rate ) sf.write( (audio_root / f"{utt_id}.flac").as_posix(), _wavform.T.numpy(), tgt_sample_rate ) else: print("Extracting log mel filter bank features...") gcmvn_feature_list = [] if split == 'train' and args.cmvn_type == "global": print("And estimating cepstral mean and variance stats...") for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset): features = extract_fbank_features( waveform, sample_rate, audio_root / f"{utt_id}.npy" ) if split == 'train' and args.cmvn_type == "global": if len(gcmvn_feature_list) < args.gcmvn_max_num: gcmvn_feature_list.append(features) if split == 'train' and args.cmvn_type == "global": # Estimate and save cmv stats = cal_gcmvn_stats(gcmvn_feature_list) with open(cur_root / "gcmvn.npz", "wb") as f: np.savez(f, mean=stats["mean"], std=stats["std"]) # Pack features into ZIP zip_path = cur_root / f"{audio_root.name}.zip" print("ZIPing audios/features...") create_zip(audio_root, zip_path) print("Fetching ZIP manifest...") audio_paths, audio_lengths = get_zip_manifest( zip_path, is_audio=args.use_audio_input, ) # Generate TSV manifest print("Generating manifest...") train_text = [] for split in MUSTC.SPLITS: is_train_split = split.startswith("train") manifest = {c: [] for c in MANIFEST_COLUMNS} dataset = MUSTC(args.data_root, lang, split) for _, _, src_utt, tgt_utt, speaker_id, utt_id in tqdm(dataset): manifest["id"].append(utt_id) manifest["audio"].append(audio_paths[utt_id]) manifest["n_frames"].append(audio_lengths[utt_id]) manifest["tgt_text"].append( src_utt if args.task == "asr" else tgt_utt ) manifest["speaker"].append(speaker_id) if is_train_split: train_text.extend(manifest["tgt_text"]) df = pd.DataFrame.from_dict(manifest) df = filter_manifest_df(df, is_train_split=is_train_split) save_df_to_tsv(df, cur_root / f"{split}_{args.task}.tsv") # Generate vocab v_size_str = "" if args.vocab_type == "char" else str(args.vocab_size) spm_filename_prefix = f"spm_{args.vocab_type}{v_size_str}_{args.task}" with NamedTemporaryFile(mode="w") as f: for t in train_text: f.write(t + "\n") gen_vocab( Path(f.name), cur_root / spm_filename_prefix, args.vocab_type, args.vocab_size, ) # Generate config YAML if args.use_audio_input: gen_config_yaml( cur_root, spm_filename=spm_filename_prefix + ".model", yaml_filename=f"config_{args.task}.yaml", specaugment_policy=None, extra={"use_audio_input": True} ) else: gen_config_yaml( cur_root, spm_filename=spm_filename_prefix + ".model", yaml_filename=f"config_{args.task}.yaml", specaugment_policy="lb", cmvn_type=args.cmvn_type, gcmvn_path=( cur_root / "gcmvn.npz" if args.cmvn_type == "global" else None ), ) # Clean up shutil.rmtree(audio_root) def process_joint(args): cur_root = Path(args.data_root) assert all( (cur_root / f"en-{lang}").is_dir() for lang in MUSTC.LANGUAGES ), "do not have downloaded data available for all 8 languages" # Generate vocab vocab_size_str = "" if args.vocab_type == "char" else str(args.vocab_size) spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size_str}_{args.task}" with NamedTemporaryFile(mode="w") as f: for lang in MUSTC.LANGUAGES: tsv_path = cur_root / f"en-{lang}" / f"train_{args.task}.tsv" df = load_df_from_tsv(tsv_path) for t in df["tgt_text"]: f.write(t + "\n") special_symbols = None if args.task == 'st': special_symbols = [f'' for lang in MUSTC.LANGUAGES] gen_vocab( Path(f.name), cur_root / spm_filename_prefix, args.vocab_type, args.vocab_size, special_symbols=special_symbols ) # Generate config YAML gen_config_yaml( cur_root, spm_filename=spm_filename_prefix + ".model", yaml_filename=f"config_{args.task}.yaml", specaugment_policy="ld", prepend_tgt_lang_tag=(args.task == "st"), ) # Make symbolic links to manifests for lang in MUSTC.LANGUAGES: for split in MUSTC.SPLITS: src_path = cur_root / f"en-{lang}" / f"{split}_{args.task}.tsv" desc_path = cur_root / f"{split}_{lang}_{args.task}.tsv" if not desc_path.is_symlink(): os.symlink(src_path, desc_path) def main(): parser = argparse.ArgumentParser() parser.add_argument("--data-root", "-d", required=True, type=str) parser.add_argument( "--vocab-type", default="unigram", required=True, type=str, choices=["bpe", "unigram", "char"], ), parser.add_argument("--vocab-size", default=8000, type=int) parser.add_argument("--task", type=str, choices=["asr", "st"]) parser.add_argument("--joint", action="store_true", help="") parser.add_argument( "--cmvn-type", default="utterance", choices=["global", "utterance"], help="The type of cepstral mean and variance normalization" ) parser.add_argument( "--gcmvn-max-num", default=150000, type=int, help="Maximum number of sentences to use to estimate global mean and " "variance" ) parser.add_argument("--use-audio-input", action="store_true") args = parser.parse_args() if args.joint: process_joint(args) else: process(args) if __name__ == "__main__": main()