""" Script to translate given single english audio file to corresponding hindi text Usage : python s2t_en2hi.py """ import gradio as gr import sys import os import subprocess from pydub import AudioSegment from huggingface_hub import snapshot_download def install_fairseq(): try: # Run pip install command to install fairseq subprocess.check_call(["pip", "install", "fairseq"]) subprocess.check_call(["pip", "install", "sentencepiece"]) subprocess.check_call(["pip", "install", "soundfile"]) return "fairseq successfully installed!" except subprocess.CalledProcessError as e: return f"An error occurred while installing fairseq: {str(e)}" def convert_audio_to_16k_wav(audio_input): sound = AudioSegment.from_file(audio_input) sample_rate = sound.frame_rate num_channels = sound.channels num_frames = int(sound.frame_count()) filename = audio_input.split("/")[-1] print("original file is at:", audio_input) if (num_channels > 1) or (sample_rate != 16000): # convert to mono-channel 16k wav if num_channels > 1: sound = sound.set_channels(1) if sample_rate != 16000: sound = sound.set_frame_rate(16000) num_frames = int(sound.frame_count()) filename = filename.replace(".wav", "") + "_16k.wav" sound.export(f"{filename}", format="wav") return filename def run_my_code(input_text, language): # TODO better argument handling audio=convert_audio_to_16k_wav(input_text) hi_wav = audio data_root="" model_checkpoint="" d_r="" if(language=="Hindi"): model_checkpoint = "./models/hindi_model.pt" data_root="./MUSTC_ROOT_hindi/en-hi/" d_r="MUSTC_ROOT_hindi/" if(language=="French"): model_checkpoint = "./models/french_model.pt" data_root="./MUSTC_ROOT_french/en-fr/" d_r="MUSTC_ROOT_french/" os.system(f"cp {hi_wav} {data_root}data/tst-COMMON/wav/test.wav") print("------Starting data prepration...") subprocess.run(["python", "prep_mustc_data_hindi_single.py", "--data-root", d_r, "--task", "st", "--vocab-type", "unigram", "--vocab-size", "8000"], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) print("------Performing translation...") translation_result = subprocess.run(["fairseq-generate", data_root, "--config-yaml", "config_st.yaml", "--gen-subset", "tst-COMMON_st", "--task", "speech_to_text", "--path", model_checkpoint, "--max-tokens", "50000", "--beam", "5", "--scoring", "sacrebleu"], capture_output=True, text=True) translation_result_text = translation_result.stdout lines = translation_result_text.split("\n") output_text="" print("\n\n------Translation results are:") for i in lines: if (i.startswith("D-0")): print(i.split("\t")[2]) output_text=i.split("\t")[2] break os.system(f"rm {data_root}data/tst-COMMON/wav/test.wav") return output_text install_fairseq() # Define the input and output interfaces for Gradio #inputs = [ # gr.inputs.Audio(source="microphone", type="filepath", label="Record something (in English)..."), # gr.inputs.Dropdown(list(LANGUAGE_CODES.keys()), default="Hindi", label="From English to Languages X..."), # ] #input_textbox = gr.inputs.Textbox(label="test2.wav") #input=gr.inputs.Audio(source="microphone", type="filepath", label="Record something (in English)...") #audio=convert_audio_to_16k_wav(input) output_textbox = gr.outputs.Textbox(label="Output Text") # Create a Gradio interface iface = gr.Interface( fn=run_my_code, inputs=[gr.inputs.Audio(source="microphone", type="filepath", label="Record something (in English)..."), gr.inputs.Radio(["Hindi", "French"], label="Language")], outputs=output_textbox, title="English to Hindi Translator") # Launch the interface iface.launch()