import gradio as gr import subprocess subprocess.check_call(["pip", "install", "transformers"]) subprocess.check_call(["pip", "install", "torch"]) subprocess.check_call(["pip", "install", "sentencepiece"]) from transformers import MBartForConditionalGeneration, MBart50TokenizerFast from transformers import pipeline summarizer = pipeline("summarization", model="facebook/bart-large-cnn") model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") def summariser(ar_en, lang): summ = summarizer(ar_en, max_length=130, min_length=30, do_sample=False)[0]['summary_text'] tokenizer.src_lang = "en_XX" encoded_ar = tokenizer(summ, return_tensors="pt") if(lang=='Hindi'): coi='hi_IN' if(lang=='Gujrati'): coi='gu_IN' if(lang=='Bengali'): coi='bn_IN' if(lang=='Tamil'): coi='ta_IN' generated_tokens = model.generate( **encoded_ar, forced_bos_token_id=tokenizer.lang_code_to_id[coi] ) output = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] return output iface = gr.Interface( fn=summariser, inputs=[gr.Textbox(label="Enter the paragraph in English", placeholder="Type here..."), gr.Radio(["Hindi", "Gujrati", "Bengali", "Tamil"], label="Language to be summarised in:")], outputs=gr.Textbox(label="Summarised Text"), title="English to Indic Summariser" ) iface.launch()