import torch import gradio as gr from diffusers import StableDiffusionXLPipeline, DPMSolverSinglestepScheduler # Load model and set the device to CPU pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", torch_dtype=torch.float32).to("cpu") # Ensure sampler uses "trailing" timesteps pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") # Function to generate image def generate_image(prompt): image = pipe(prompt, num_inference_steps=7, guidance_scale=3).images[0] return image # Create Gradio interface iface = gr.Interface( fn=generate_image, inputs=gr.Textbox(label="Enter Prompt", placeholder="Enter a description for the image"), outputs=gr.Image(label="Generated Image") ) # Launch the Gradio interface iface.launch()