import json import re from typing import Optional, Dict, Any, Tuple from pydantic import BaseModel, Field, validator from huggingface_hub import InferenceClient from huggingface_hub.errors import HfHubHTTPError from variables import meta_prompts, prompt_refiner_model class LLMResponse(BaseModel): initial_prompt_evaluation: str = Field(..., description="Evaluation of the initial prompt") refined_prompt: str = Field(..., description="The refined version of the prompt") explanation_of_refinements: str = Field(..., description="Explanation of the refinements made") response_content: Optional[Dict[str, Any]] = Field(None, description="Raw response content") @validator('initial_prompt_evaluation', 'refined_prompt', 'explanation_of_refinements') def clean_text_fields(cls, v): if isinstance(v, str): return v.strip().replace('\\n', '\n').replace('\\"', '"') return v class PromptRefiner: def __init__(self, api_token: str, meta_prompts: dict): self.client = InferenceClient(token=api_token, timeout=120) self.meta_prompts = meta_prompts def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> Tuple[str, str, str, dict]: """Refine the given prompt using the selected meta prompt.""" try: selected_meta_prompt = self.meta_prompts.get( meta_prompt_choice, self.meta_prompts["star"] ) messages = [ { "role": "system", "content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more relevant and detailed prompt.' }, { "role": "user", "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt) } ] response = self.client.chat_completion( model=prompt_refiner_model, messages=messages, max_tokens=3000, temperature=0.8 ) response_content = response.choices[0].message.content.strip() result = self._parse_response(response_content) try: llm_response = LLMResponse(**result) return ( llm_response.initial_prompt_evaluation, llm_response.refined_prompt, llm_response.explanation_of_refinements, llm_response.dict() ) except Exception as e: print(f"Error creating LLMResponse: {e}") return self._create_error_response(f"Error validating response: {str(e)}") except HfHubHTTPError as e: return self._create_error_response("Model timeout. Please try again later.") except Exception as e: return self._create_error_response(f"Unexpected error: {str(e)}") def _parse_response(self, response_content: str) -> dict: """Parse the LLM response content.""" try: # Try to extract JSON from tags json_match = re.search(r'\s*(.*?)\s*', response_content, re.DOTALL) if json_match: json_str = json_match.group(1).strip() # Clean up the JSON string json_str = re.sub(r'\s+', ' ', json_str) json_str = json_str.replace('•', '*') # Replace bullet points try: parsed_json = json.loads(json_str) if isinstance(parsed_json, str): parsed_json = json.loads(parsed_json) return { "initial_prompt_evaluation": parsed_json.get("initial_prompt_evaluation", ""), "refined_prompt": parsed_json.get("refined_prompt", ""), "explanation_of_refinements": parsed_json.get("explanation_of_refinements", ""), "response_content": parsed_json } except json.JSONDecodeError as e: print(f"JSON parsing error: {e}") return self._create_error_dict(str(e)) # Fallback to regex parsing if JSON extraction fails return self._parse_with_regex(response_content) except Exception as e: print(f"Error parsing response: {e}") print(f"Raw content: {response_content}") return self._create_error_dict(str(e)) def _parse_with_regex(self, content: str) -> dict: """Parse content using regex patterns when JSON parsing fails.""" output = {} for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]: pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})' match = re.search(pattern, content, re.DOTALL) output[key] = match.group(1) if match else "" output["response_content"] = content return output def _create_error_dict(self, error_message: str) -> dict: """Create a standardized error response dictionary.""" return { "initial_prompt_evaluation": f"Error parsing response: {error_message}", "refined_prompt": "", "explanation_of_refinements": "", "response_content": {"error": error_message} } def _create_error_response(self, error_message: str) -> Tuple[str, str, str, dict]: """Create a standardized error response tuple.""" return ( f"Error: {error_message}", "The selected model is currently unavailable.", "An error occurred during processing.", {"error": error_message} )