Spaces:
Running
Running
File size: 16,120 Bytes
0bb3006 a217992 ad2df9a 2e9f353 8100125 09cb397 4e9c5bd 09cb397 ad2df9a 09cb397 ad2df9a 09cb397 4e9c5bd ad2df9a 09cb397 4e9c5bd ad2df9a 4e9c5bd ad2df9a 4e9c5bd 09cb397 ad2df9a 09cb397 ad2df9a 09cb397 ad2df9a 4e9c5bd 09cb397 4e9c5bd ad2df9a 4e9c5bd ad2df9a 09cb397 ad2df9a 4e9c5bd 09cb397 4e9c5bd 09cb397 ad2df9a 09cb397 4e9c5bd ad2df9a 4e9c5bd 09cb397 8100125 ad2df9a 09cb397 ad2df9a 4e9c5bd ad2df9a 09cb397 ad2df9a 09cb397 4e9c5bd ad2df9a 4e9c5bd b3f3cb1 4e9c5bd ad2df9a 09cb397 4e9c5bd 09cb397 ad2df9a 09cb397 b68c9a6 ad2df9a 09cb397 ad2df9a 09cb397 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import gradio as gr
from prompt_refiner import PromptRefiner
from variables import models, explanation_markdown, metaprompt_list, examples
from custom_css import custom_css
class GradioInterface:
def __init__(self, prompt_refiner: PromptRefiner, custom_css):
self.prompt_refiner = prompt_refiner
# Set default model to second-to-last in the list
default_model = models[-1] if len(models) >= 1 else models[0] if models else None
#meta_prompt_choice=metaprompt_list[0]
with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as self.interface:
# CONTAINER 1
with gr.Column(elem_classes=["container", "title-container"]):
gr.Markdown("# PROMPT++")
gr.Markdown("### Automating Prompt Engineering by Refining your Prompts")
gr.Markdown("Learn how to generate an improved version of your prompts.")
# CONTAINER 2
with gr.Column(elem_classes=["container", "input-container"]):
prompt_text = gr.Textbox(label="Type your prompt (or leave empty to see metaprompt)",lines=5)
with gr.Accordion("Prompt Examples", open=False, visible=True):
gr.Examples(examples=examples,inputs=[prompt_text])
automatic_metaprompt_button = gr.Button(
"Automatic Choice for Refinement Method",
elem_classes=["button-highlight"]
)
MetaPrompt_analysis = gr.Markdown()
# CONTAINER 3
with gr.Column(elem_classes=["container","meta-container"]):
meta_prompt_choice = gr.Radio(
choices=metaprompt_list,
label="Choose Meta Prompt",
value=metaprompt_list[0],
elem_classes=["no-background", "radio-group"]
)
refine_button = gr.Button(
"Refine Prompt",
elem_classes=["button-waiting"]
)
with gr.Accordion("Metaprompt Explanation", open=False, visible=True):
gr.Markdown(explanation_markdown)
with gr.Column(elem_classes=["container", "analysis-container"]):
gr.Markdown(" ")
prompt_evaluation = gr.Markdown()
gr.Markdown("### Refined Prompt")
refined_prompt = gr.Textbox(
label=" ",
interactive=True,
show_label=True,
show_copy_button=True,
)
explanation_of_refinements = gr.Markdown()
with gr.Column(elem_classes=["container", "model-container"]):
with gr.Row():
apply_model = gr.Dropdown(
choices=models,
value=default_model,
label="Choose the Model",
container=False,
scale=1,
min_width=300
)
apply_button = gr.Button(
"Apply Prompts",
elem_classes=["button-waiting"]
)
gr.Markdown("### Prompts on Chosen Model")
with gr.Tabs(elem_classes=["tabs"]):
with gr.TabItem("Prompts Output Comparison", elem_classes=["tabitem"]):
with gr.Row(elem_classes=["output-row"]):
with gr.Column(scale=1, elem_classes=["comparison-column"]):
gr.Markdown("### Original Prompt Output")
original_output1 = gr.Markdown(
# value="Output will appear here",
elem_classes=["output-content"],
visible=True
)
with gr.Column(scale=1, elem_classes=["comparison-column"]):
gr.Markdown("### Refined Prompt Output")
refined_output1 = gr.Markdown(
# value="Output will appear here",
elem_classes=["output-content"],
visible=True
)
with gr.TabItem("Original Prompt Output", elem_classes=["tabitem"]):
with gr.Row(elem_classes=["output-row"]):
with gr.Column(scale=1, elem_classes=["comparison-column"]):
gr.Markdown("### Original Prompt Output")
original_output = gr.Markdown(
# value="Output will appear here",
elem_classes=[ "output-content"],
visible=True
)
with gr.TabItem("Refined Prompt Output", elem_classes=["tabitem"]):
with gr.Row(elem_classes=["output-row"]):
with gr.Column(scale=1, elem_classes=["comparison-column"]):
gr.Markdown("### Refined Prompt Output")
refined_output = gr.Markdown(
# value="Output will appear here",
elem_classes=["output-content"],
visible=True
)
with gr.Accordion("Full Response JSON", open=False, visible=True):
full_response_json = gr.JSON()
# Button click handlers
automatic_metaprompt_button.click(
fn=self.automatic_metaprompt,
inputs=[prompt_text],
outputs=[MetaPrompt_analysis, meta_prompt_choice]
).then(
fn=lambda: None,
inputs=None,
outputs=None,
js="""
() => {
// Clear subsequent outputs
document.querySelectorAll('.analysis-container textarea, .analysis-container .markdown-text, .model-container .markdown-text, .comparison-output').forEach(el => {
if (el.value !== undefined) {
el.value = '';
} else {
el.textContent = '';
}
});
// Update button states
const allButtons = Array.from(document.querySelectorAll('button')).filter(btn =>
btn.textContent.includes('Automatic Choice') ||
btn.textContent.includes('Refine Prompt') ||
btn.textContent.includes('Apply Prompts')
);
allButtons.forEach(btn => btn.classList.remove('button-highlight'));
allButtons[1].classList.add('button-highlight'); // Highlight refine button
allButtons[0].classList.add('button-completed'); // Complete current button
allButtons[2].classList.add('button-waiting'); // Set apply button to waiting
}
"""
)
refine_button.click(
fn=self.refine_prompt,
inputs=[prompt_text, meta_prompt_choice],
outputs=[prompt_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
).then(
fn=lambda: None,
inputs=None,
outputs=None,
js="""
() => {
// Clear model outputs
document.querySelectorAll('.model-container .markdown-text, .comparison-output').forEach(el => {
if (el.value !== undefined) {
el.value = '';
} else {
el.textContent = '';
}
});
// Update button states
const allButtons = Array.from(document.querySelectorAll('button')).filter(btn =>
btn.textContent.includes('Automatic Choice') ||
btn.textContent.includes('Refine Prompt') ||
btn.textContent.includes('Apply Prompts')
);
allButtons.forEach(btn => btn.classList.remove('button-highlight'));
allButtons[2].classList.add('button-highlight'); // Highlight apply button
allButtons[1].classList.add('button-completed'); // Complete current button
allButtons[2].classList.remove('button-waiting'); // Remove waiting from apply button
}
"""
)
apply_button.click(
fn=self.apply_prompts,
inputs=[prompt_text, refined_prompt, apply_model],
outputs=[original_output, refined_output, original_output1, refined_output1],
show_progress=True # Add this line
).then(
fn=lambda: None,
inputs=None,
outputs=None,
js="""
() => {
// Update button states
const allButtons = Array.from(document.querySelectorAll('button')).filter(btn =>
btn.textContent.includes('Automatic Choice') ||
btn.textContent.includes('Refine Prompt') ||
btn.textContent.includes('Apply Prompts')
);
allButtons.forEach(btn => btn.classList.remove('button-highlight', 'button-waiting'));
allButtons[2].classList.add('button-completed'); // Complete apply button
// Force refresh of output containers
document.querySelectorAll('.comparison-output').forEach(el => {
if (el.parentElement) {
el.parentElement.style.display = 'none';
setTimeout(() => {
el.parentElement.style.display = 'block';
}, 100);
}
});
}
"""
)
# Reset when input changes
prompt_text.change(
fn=lambda: None,
inputs=None,
outputs=None,
js="""
() => {
// Clear all outputs
document.querySelectorAll('.analysis-container textarea, .analysis-container .markdown-text, .model-container .markdown-text, .comparison-output').forEach(el => {
if (el.value !== undefined) {
el.value = '';
} else {
el.textContent = '';
}
});
// Reset all button states
const allButtons = Array.from(document.querySelectorAll('button')).filter(btn =>
btn.textContent.includes('Automatic Choice') ||
btn.textContent.includes('Refine Prompt') ||
btn.textContent.includes('Apply Prompts')
);
allButtons.forEach(btn => {
btn.classList.remove('button-completed', 'button-highlight', 'button-waiting');
});
allButtons[0].classList.add('button-highlight'); // Highlight first button
allButtons.slice(1).forEach(btn => btn.classList.add('button-waiting')); // Set subsequent buttons to waiting
}
"""
)
def automatic_metaprompt(self, prompt: str) -> tuple:
"""Handle automatic metaprompt selection"""
try:
if not prompt.strip():
return "Please enter a prompt to analyze.", None
metaprompt_analysis, recommended_key = self.prompt_refiner.automatic_metaprompt(prompt)
return metaprompt_analysis, recommended_key
except Exception as e:
error_message = f"Error in automatic metaprompt: {str(e)}"
return error_message, None
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
"""Handle manual prompt refinement"""
try:
if not prompt.strip():
return ("No prompt provided.", "", "", {})
result = self.prompt_refiner.refine_prompt(prompt, meta_prompt_choice)
return (
result[0], # initial_prompt_evaluation
result[1], # refined_prompt
result[2], # explanation_of_refinements
result[3] # full_response
)
except Exception as e:
error_message = f"Error in refine_prompt: {str(e)}"
return error_message, "", "", {}
def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str) -> tuple:
"""Apply both original and refined prompts to the selected model"""
try:
if not original_prompt or not refined_prompt:
return ("Please provide both original and refined prompts.",
"Please provide both original and refined prompts.",
"Please provide both original and refined prompts.",
"Please provide both original and refined prompts.")
if not model:
return ("Please select a model.",
"Please select a model.",
"Please select a model.",
"Please select a model.")
# Apply prompts and get outputs
try:
# print(original_prompt)
# print(refined_prompt)
#print(model)
original_output = self.prompt_refiner.apply_prompt(original_prompt, model)
#print(original_output)
refined_output = self.prompt_refiner.apply_prompt(refined_prompt, model)
except Exception as e:
return (f"Error applying prompts: {str(e)}",
f"Error applying prompts: {str(e)}",
f"Error applying prompts: {str(e)}",
f"Error applying prompts: {str(e)}")
# Ensure we have string outputs
original_output = str(original_output) if original_output is not None else "No output generated"
refined_output = str(refined_output) if refined_output is not None else "No output generated"
#print('-'*100)
#print(original_output)
#print('-'*100)
#print(refined_output)
#print('-'*100)
return (
original_output, # For Original Prompt Output tab
refined_output, # For Refined Prompt Output tab
original_output, # For Comparison tab - original
refined_output # For Comparison tab - refined
)
except Exception as e:
error_message = f"Error in apply_prompts: {str(e)}"
return (error_message, error_message, error_message, error_message)
def launch(self, share=False):
"""Launch the Gradio interface"""
self.interface.launch(share=share)
if __name__ == '__main__':
from variables import api_token, meta_prompts, metaprompt_explanations
# Initialize the prompt refiner
prompt_refiner = PromptRefiner(api_token, meta_prompts, metaprompt_explanations)
# Create and launch the Gradio interface
gradio_interface = GradioInterface(prompt_refiner, custom_css)
gradio_interface.launch(share=True) |