import json import gzip import gradio as gr from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download from io import StringIO from src.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( BENCHMARK_COLS, BENCHMARK_COLS_MULTIMODAL, COLS, COLS_MULTIMODAL, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, fields, ) from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN from src.populate import get_evaluation_queue_df, get_leaderboard_df from src.submission.submit import add_new_eval def restart_space(): API.restart_space(repo_id=REPO_ID) ### Space initialisation try: print(EVAL_REQUESTS_PATH) snapshot_download( repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) except Exception: restart_space() try: print(EVAL_RESULTS_PATH) snapshot_download( repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) except Exception: restart_space() LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL) ( finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) def init_leaderboard(dataframe, track): if dataframe is None or dataframe.empty: raise ValueError("Leaderboard DataFrame is empty or None.") # filter for correct track dataframe = dataframe.loc[dataframe["Track"] == track] return Leaderboard( value=dataframe, datatype=[c.type for c in fields(AutoEvalColumn)], select_columns=SelectColumns( default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], label="Select Columns to Display:", ), search_columns=[AutoEvalColumn.model.name], hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], bool_checkboxgroup_label="Hide models", interactive=False, ) def process_json(temp_file): if temp_file is None: return {} # Handle file upload try: file_path = temp_file.name if file_path.endswith('.gz'): with gzip.open(file_path, 'rt') as f: data = json.load(f) else: with open(file_path, 'r') as f: data = json.load(f) except Exception as e: raise gr.Error(f"Error processing file: {str(e)}") gr.Markdown("Upload successful!") return data demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("Strict", elem_id="strict-benchmark-tab-table", id=0): leaderboard = init_leaderboard(LEADERBOARD_DF, "strict") with gr.TabItem("Strict-small", elem_id="strict-small-benchmark-tab-table", id=1): leaderboard = init_leaderboard(LEADERBOARD_DF, "strict-small") with gr.TabItem("Multimodal", elem_id="multimodal-benchmark-tab-table", id=2): leaderboard = init_leaderboard(LEADERBOARD_DF_MULTIMODAL, "multimodal") with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=4): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") with gr.TabItem("πŸ‘Ά Submit", elem_id="llm-benchmark-tab-table", id=5): with gr.Column(): with gr.Row(): gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") with gr.Column(): with gr.Accordion( f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})", open=False, ): with gr.Row(): finished_eval_table = gr.components.Dataframe( value=finished_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5, ) with gr.Accordion( f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})", open=False, ): with gr.Row(): running_eval_table = gr.components.Dataframe( value=running_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5, ) with gr.Accordion( f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", open=False, ): with gr.Row(): pending_eval_table = gr.components.Dataframe( value=pending_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5, ) with gr.Row(): gr.Markdown("# βœ‰οΈβœ¨ Submit your predictions here!", elem_classes="markdown-text") with gr.Row(): with gr.Column(): model_name_textbox = gr.Textbox(label="Model name.Β This will be displayed on the leaderboard.") model_id_textbox = gr.Textbox(label="Huggingface model ID (if applicable). This looks like `owner/repo_id`, not like a URL.", placeholder="") revision_name_textbox = gr.Textbox(label="Model revision commit", placeholder="main") track_name = gr.Dropdown( choices = ["strict", "strict-small", "multimodal"], label = "Track", multiselect=False, value=None, interactive=True ) predictions_data = gr.State() upload_button = gr.UploadButton(label="Upload predictions", file_types=[".json", ".gz"], file_count="single") upload_button.upload( fn=process_json, inputs=upload_button, outputs=predictions_data, api_name="upload_json" ) submit_button = gr.Button("Submit Eval") submission_result = gr.Markdown() submit_button.click( add_new_eval, [ model_name_textbox, model_id_textbox, revision_name_textbox, track_name, predictions_data, ], submission_result, ) with gr.Row(): with gr.Accordion("πŸ“™ Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True, ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() demo.queue(default_concurrency_limit=40).launch()