import json import os from datetime import datetime, timezone from src.display.formatting import styled_error, styled_message, styled_warning from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO from src.submission.check_validity import ( already_submitted_models, check_model_card, get_model_size, is_model_on_hub, is_valid_predictions, ) REQUESTED_MODELS = None USERS_TO_SUBMISSION_DATES = None def add_new_eval( model_name: str, model_id: str, revision: str, track: str, predictions: dict, ): global REQUESTED_MODELS global USERS_TO_SUBMISSION_DATES if not REQUESTED_MODELS: REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) out_message = "" user_name = "" model_path = model_name if "/" in model_name: user_name = model_name.split("/")[0] model_path = model_name.split("/")[1] current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") if track is None: return styled_error("Please select a track.") # Does the model actually exist? if revision == "": revision = "main" out_message = "" # Is the model info correctly filled? print("Made it before 1") try: model_info = API.model_info(repo_id=model_id, revision=revision) except Exception: out_message += styled_warning("Could not get your model information. The leaderboard entry will not have a link to its HF repo.") + "
" print("Made it after 1") try: predictions_OK, error_msg = is_valid_predictions(predictions) if not predictions_OK: return styled_error(error_msg) + "
" except: return styled_error(error_msg) + "
" print("Made it after 3") # Seems good, creating the eval print("Adding new eval") eval_entry = { "model_name": model_name, "hf_repo": model_id, "revision": revision, "track": track, "predictions": predictions, "status": "PENDING", "submitted_time": current_time, } print("Made it after 4") # Check for duplicate submission if f"{model_name}_{revision}_{track}" in REQUESTED_MODELS: return styled_error("A model with this name has been already submitted.") print("Creating eval file") OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" os.makedirs(OUT_DIR, exist_ok=True) out_path = f"{OUT_DIR}/{model_path}_{revision}_eval_request_False_{track}.json" print("Made it after 5") with open(out_path, "w") as f: f.write(json.dumps(eval_entry)) print("Uploading eval file") API.upload_file( path_or_fileobj=out_path, path_in_repo=out_path.split("eval-queue/")[1], repo_id=QUEUE_REPO, repo_type="dataset", commit_message=f"Add {model_name} to eval queue", ) print("Made it after 6") # Remove the local file os.remove(out_path) return styled_message( "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the request to show in the PENDING list." )