File size: 3,173 Bytes
63cb7f9
 
 
 
 
 
 
 
 
 
 
a5487ef
63cb7f9
 
 
 
 
 
de60bd6
e1db744
63cb7f9
1ab72b5
 
63cb7f9
 
 
 
 
 
e1db744
 
63cb7f9
de60bd6
9b785e1
de60bd6
 
63cb7f9
 
de60bd6
 
 
 
63cb7f9
 
 
a5487ef
 
63cb7f9
 
d162626
63cb7f9
e1db744
63cb7f9
a5487ef
d162626
63cb7f9
9134b9b
 
 
 
 
a5487ef
63cb7f9
d162626
 
63cb7f9
 
 
 
de60bd6
e1db744
63cb7f9
1ab72b5
 
63cb7f9
 
 
 
d162626
 
63cb7f9
fb22d4b
a5487ef
63cb7f9
 
 
 
a5487ef
63cb7f9
d162626
 
63cb7f9
 
 
 
 
 
 
 
 
9b785e1
63cb7f9
 
d162626
 
63cb7f9
 
 
 
1ab72b5
86a4a73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import json
import os
from datetime import datetime, timezone

from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import (
    already_submitted_models,
    check_model_card,
    get_model_size,
    is_model_on_hub,
    is_valid_predictions,
)

REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None

def add_new_eval(
    model_name: str,
    model_id: str,
    revision: str,
    track: str,
    predictions: dict,
):
    global REQUESTED_MODELS
    global USERS_TO_SUBMISSION_DATES
    if not REQUESTED_MODELS:
        REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)

    out_message = ""

    user_name = ""
    model_path = model_name
    if "/" in model_name:
        user_name = model_name.split("/")[0]
        model_path = model_name.split("/")[1]

    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
    
    if track is None:
        return styled_error("Please select a track.")

    # Does the model actually exist?
    if revision == "":
        revision = "main"
    
    out_message = ""

    # Is the model info correctly filled?
    print("Made it before 1")
    try:
        model_info = API.model_info(repo_id=model_id, revision=revision)
    except Exception:
        out_message += styled_warning("Could not get your model information. The leaderboard entry will not have a link to its HF repo.") + "<br>"
    print("Made it after 1")

    try:
        predictions_OK, error_msg = is_valid_predictions(predictions)
        if not predictions_OK:
            return styled_error(error_msg) + "<br>"
    except:
        return styled_error(error_msg) + "<br>"

    print("Made it after 3")

    # Seems good, creating the eval
    print("Adding new eval")

    eval_entry = {
        "model_name": model_name,
        "hf_repo": model_id,
        "revision": revision,
        "track": track,
        "predictions": predictions,
        "status": "PENDING",
        "submitted_time": current_time,
    }

    print("Made it after 4")

    # Check for duplicate submission
    if f"{model_name}_{revision}_{track}" in REQUESTED_MODELS:
        return styled_error("A model with this name has been already submitted.")

    print("Creating eval file")
    OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
    os.makedirs(OUT_DIR, exist_ok=True)
    out_path = f"{OUT_DIR}/{model_path}_{revision}_eval_request_False_{track}.json"

    print("Made it after 5")

    with open(out_path, "w") as f:
        f.write(json.dumps(eval_entry))

    print("Uploading eval file")
    API.upload_file(
        path_or_fileobj=out_path,
        path_in_repo=out_path.split("eval-queue/")[1],
        repo_id=QUEUE_REPO,
        repo_type="dataset",
        commit_message=f"Add {model_name} to eval queue",
    )

    print("Made it after 6")

    # Remove the local file
    os.remove(out_path)

    return styled_message(
        "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the request to show in the PENDING list."
    )