# Copyright (c) Guangsheng Bao. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer import tqdm import argparse import json from data_builder import load_data from metrics import get_roc_metrics, get_precision_recall_metrics from model import from_pretrained def experiment(args): # load model print(f'Beginning supervised evaluation with {args.model_name}...') detector = from_pretrained(AutoModelForSequenceClassification, args.model_name, {}, args.cache_dir).to(args.device) tokenizer = from_pretrained(AutoTokenizer, args.model_name, {}, args.cache_dir) detector.eval() # load data data = load_data(args.dataset_file) n_samples = len(data["sampled"]) # eval detector name = args.model_name torch.manual_seed(args.seed) np.random.seed(args.seed) eval_results = [] for idx in tqdm.tqdm(range(n_samples), desc=f"Computing {name} criterion"): original_text = data["original"][idx] sampled_text = data["sampled"][idx] # original text tokenized = tokenizer(original_text, padding=True, truncation=True, max_length=512, return_tensors="pt").to(args.device) with torch.no_grad(): original_crit = detector(**tokenized).logits.softmax(-1)[0, 0].item() # sampled text tokenized = tokenizer(sampled_text, padding=True, truncation=True, max_length=512, return_tensors="pt").to(args.device) with torch.no_grad(): sampled_crit = detector(**tokenized).logits.softmax(-1)[0, 0].item() # result eval_results.append({"original": original_text, "original_crit": original_crit, "sampled": sampled_text, "sampled_crit": sampled_crit}) # compute prediction scores for real/sampled passages predictions = {'real': [x["original_crit"] for x in eval_results], 'samples': [x["sampled_crit"] for x in eval_results]} fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples']) p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples']) print(f"Criterion {name}_threshold ROC AUC: {roc_auc:.4f}, PR AUC: {pr_auc:.4f}") # log results results_file = f'{args.output_file}.{name}.json' results = { 'name': f'{name}_threshold', 'info': {'n_samples': n_samples}, 'predictions': predictions, 'raw_results': eval_results, 'metrics': {'roc_auc': roc_auc, 'fpr': fpr, 'tpr': tpr}, 'pr_metrics': {'pr_auc': pr_auc, 'precision': p, 'recall': r}, 'loss': 1 - pr_auc} with open(results_file, 'w') as fout: json.dump(results, fout) print(f'Results written into {results_file}') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--output_file', type=str, default="./exp_test/results/xsum_gpt2") parser.add_argument('--dataset', type=str, default="xsum") parser.add_argument('--dataset_file', type=str, default="./exp_test/data/xsum_gpt2") parser.add_argument('--model_name', type=str, default="roberta-base-openai-detector") parser.add_argument('--seed', type=int, default=0) parser.add_argument('--device', type=str, default="cuda") parser.add_argument('--cache_dir', type=str, default="../cache") args = parser.parse_args() experiment(args)