# Copyright (c) Guangsheng Bao. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import time import numpy as np import tqdm import argparse import json from metrics import get_roc_metrics, get_precision_recall_metrics from data_builder import load_data def detect_gptzero(args, text): import requests url = "https://api.gptzero.me/v2/predict/text" payload = { "document": text, "version": "2023-09-14" } headers = { "Accept": "application/json", "content-type": "application/json", "x-api-key": "" } while True: try: time.sleep(600) # 1 request per 10 minutes for free access response = requests.post(url, json=payload, headers=headers) return response.json()['documents'][0]['completely_generated_prob'] except Exception as ex: print(ex) def experiment(args): # load data data = load_data(args.dataset_file) n_samples = len(data["sampled"]) # evaluate criterion name = "gptzero" criterion_fn = detect_gptzero results = [] for idx in tqdm.tqdm(range(n_samples), desc=f"Computing {name} criterion"): original_text = data["original"][idx] sampled_text = data["sampled"][idx] original_crit = criterion_fn(args, original_text) sampled_crit = criterion_fn(args, sampled_text) # result results.append({"original": original_text, "original_crit": original_crit, "sampled": sampled_text, "sampled_crit": sampled_crit}) # compute prediction scores for real/sampled passages predictions = {'real': [x["original_crit"] for x in results], 'samples': [x["sampled_crit"] for x in results]} print(f"Real mean/std: {np.mean(predictions['real']):.2f}/{np.std(predictions['real']):.2f}, Samples mean/std: {np.mean(predictions['samples']):.2f}/{np.std(predictions['samples']):.2f}") fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples']) p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples']) print(f"Criterion {name}_threshold ROC AUC: {roc_auc:.4f}, PR AUC: {pr_auc:.4f}") # results results_file = f'{args.output_file}.{name}.json' results = { 'name': f'{name}_threshold', 'info': {'n_samples': n_samples}, 'predictions': predictions, 'raw_results': results, 'metrics': {'roc_auc': roc_auc, 'fpr': fpr, 'tpr': tpr}, 'pr_metrics': {'pr_auc': pr_auc, 'precision': p, 'recall': r}, 'loss': 1 - pr_auc} with open(results_file, 'w') as fout: json.dump(results, fout) print(f'Results written into {results_file}') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--output_file', type=str, default="./exp_gpt3to4/results/xsum_gpt-4") parser.add_argument('--dataset', type=str, default="xsum") parser.add_argument('--dataset_file', type=str, default="./exp_gpt3to4/data/xsum_gpt-4") args = parser.parse_args() experiment(args)