#!/usr/bin/env bash # Copyright (c) Guangsheng Bao. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # setup the environment echo `date`, Setup the environment ... set -e # exit if error # prepare folders para=t5 # "t5" for paraphrasing attack, or "random" for decoherence attack exp_path=exp_attack data_path=$exp_path/data res_path=$exp_path/results mkdir -p $exp_path $data_path $res_path src_path=exp_gpt3to4 src_data_path=$src_path/data datasets="xsum writing pubmed" source_models="gpt-3.5-turbo" # preparing dataset for D in $datasets; do for M in $source_models; do echo `date`, Preparing dataset ${D}_${M} by paraphrasing ${src_data_path}/${D}_${M} ... python scripts/paraphrasing.py --dataset $D --dataset_file $src_data_path/${D}_${M} \ --paraphraser $para --output_file $data_path/${D}_${M} done done # evaluate Fast-DetectGPT in the black-box setting settings="gpt-j-6B:gpt2-xl gpt-j-6B:gpt-neo-2.7B gpt-j-6B:gpt-j-6B" for D in $datasets; do for M in $source_models; do for S in $settings; do IFS=':' read -r -a S <<< $S && M1=${S[0]} && M2=${S[1]} echo `date`, Evaluating Fast-DetectGPT on ${D}_${M}.${M1}_${M2} ... python scripts/fast_detect_gpt.py --reference_model_name $M1 --scoring_model_name $M2 --discrepancy_analytic \ --dataset $D --dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M}.${M1}_${M2} done done done # evaluate supervised detectors supervised_models="roberta-base-openai-detector roberta-large-openai-detector" for D in $datasets; do for M in $source_models; do for SM in $supervised_models; do echo `date`, Evaluating ${SM} on ${D}_${M} ... python scripts/supervised.py --model_name $SM --dataset $D \ --dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M} done done done # evaluate fast baselines scoring_models="gpt-neo-2.7B" for D in $datasets; do for M in $source_models; do for M2 in $scoring_models; do echo `date`, Evaluating baseline methods on ${D}_${M}.${M2} ... python scripts/baselines.py --scoring_model_name ${M2} --dataset $D \ --dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M}.${M2} done done done # evaluate DetectGPT and DetectLLM scoring_models="gpt2-xl gpt-neo-2.7B gpt-j-6B" for D in $datasets; do for M in $source_models; do M1=t5-11b # perturbation model for M2 in $scoring_models; do echo `date`, Evaluating DetectGPT on ${D}_${M}.${M1}_${M2} ... python scripts/detect_gpt.py --mask_filling_model_name ${M1} --scoring_model_name ${M2} --n_perturbations 100 --dataset $D \ --dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M}.${M1}_${M2} # we leverage DetectGPT to generate the perturbations echo `date`, Evaluating DetectLLM methods on ${D}_${M}.${M1}_${M2} ... python scripts/detect_llm.py --scoring_model_name ${M2} --dataset $D \ --dataset_file $data_path/${D}_${M}.${M1}.perturbation_100 --output_file $res_path/${D}_${M}.${M1}_${M2} done done done