Spaces:
Sleeping
Sleeping
ayushsaini1207
commited on
Upload 2 files
Browse files- app.py +378 -0
- requirements.txt +13 -0
app.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
|
4 |
+
from tensorflow.keras.models import Model
|
5 |
+
from tensorflow.keras.layers import (LSTM, Dense, Dropout, Input, Flatten,
|
6 |
+
Bidirectional, Permute, multiply)
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import mediapipe as mp
|
10 |
+
import math
|
11 |
+
|
12 |
+
from streamlit_webrtc import webrtc_streamer, WebRtcMode, RTCConfiguration
|
13 |
+
import av
|
14 |
+
|
15 |
+
## Build and Load Model
|
16 |
+
def attention_block(inputs, time_steps):
|
17 |
+
"""
|
18 |
+
Attention layer for deep neural network
|
19 |
+
|
20 |
+
"""
|
21 |
+
# Attention weights
|
22 |
+
a = Permute((2, 1))(inputs)
|
23 |
+
a = Dense(time_steps, activation='softmax')(a)
|
24 |
+
|
25 |
+
# Attention vector
|
26 |
+
a_probs = Permute((2, 1), name='attention_vec')(a)
|
27 |
+
|
28 |
+
# Luong's multiplicative score
|
29 |
+
output_attention_mul = multiply([inputs, a_probs], name='attention_mul')
|
30 |
+
|
31 |
+
return output_attention_mul
|
32 |
+
|
33 |
+
@st.cache(allow_output_mutation=True)
|
34 |
+
def build_model(HIDDEN_UNITS=256, sequence_length=30, num_input_values=33*4, num_classes=3):
|
35 |
+
"""
|
36 |
+
Function used to build the deep neural network model on startup
|
37 |
+
|
38 |
+
Args:
|
39 |
+
HIDDEN_UNITS (int, optional): Number of hidden units for each neural network hidden layer. Defaults to 256.
|
40 |
+
sequence_length (int, optional): Input sequence length (i.e., number of frames). Defaults to 30.
|
41 |
+
num_input_values (_type_, optional): Input size of the neural network model. Defaults to 33*4 (i.e., number of keypoints x number of metrics).
|
42 |
+
num_classes (int, optional): Number of classification categories (i.e., model output size). Defaults to 3.
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
keras model: neural network with pre-trained weights
|
46 |
+
"""
|
47 |
+
# Input
|
48 |
+
inputs = Input(shape=(sequence_length, num_input_values))
|
49 |
+
# Bi-LSTM
|
50 |
+
lstm_out = Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True))(inputs)
|
51 |
+
# Attention
|
52 |
+
attention_mul = attention_block(lstm_out, sequence_length)
|
53 |
+
attention_mul = Flatten()(attention_mul)
|
54 |
+
# Fully Connected Layer
|
55 |
+
x = Dense(2*HIDDEN_UNITS, activation='relu')(attention_mul)
|
56 |
+
x = Dropout(0.5)(x)
|
57 |
+
# Output
|
58 |
+
x = Dense(num_classes, activation='softmax')(x)
|
59 |
+
# Bring it all together
|
60 |
+
model = Model(inputs=[inputs], outputs=x)
|
61 |
+
|
62 |
+
## Load Model Weights
|
63 |
+
load_dir = "./models/LSTM_Attention.h5"
|
64 |
+
model.load_weights(load_dir)
|
65 |
+
|
66 |
+
return model
|
67 |
+
|
68 |
+
HIDDEN_UNITS = 256
|
69 |
+
model = build_model(HIDDEN_UNITS)
|
70 |
+
|
71 |
+
## App
|
72 |
+
st.write("# AI Personal Fitness Trainer Web App")
|
73 |
+
|
74 |
+
st.markdown("❗❗ **Development Note** ❗❗")
|
75 |
+
st.markdown("Currently, the exercise recognition model uses the the x, y, and z coordinates of each anatomical landmark from the MediaPipe Pose model. These coordinates are normalized with respect to the image frame (e.g., the top left corner represents (x=0,y=0) and the bottom right corner represents(x=1,y=1)).")
|
76 |
+
st.markdown("I'm currently developing and testing two new feature engineering strategies:")
|
77 |
+
st.markdown("- Normalizing coordinates by the detected bounding box of the user")
|
78 |
+
st.markdown("- Using joint angles rather than keypoint coordaintes as features")
|
79 |
+
st.write("Stay Tuned!")
|
80 |
+
|
81 |
+
st.write("## Settings")
|
82 |
+
threshold1 = st.slider("Minimum Keypoint Detection Confidence", 0.00, 1.00, 0.50)
|
83 |
+
threshold2 = st.slider("Minimum Tracking Confidence", 0.00, 1.00, 0.50)
|
84 |
+
threshold3 = st.slider("Minimum Activity Classification Confidence", 0.00, 1.00, 0.50)
|
85 |
+
|
86 |
+
st.write("## Activate the AI 🤖🏋️♂️")
|
87 |
+
|
88 |
+
## Mediapipe
|
89 |
+
mp_pose = mp.solutions.pose # Pre-trained pose estimation model from Google Mediapipe
|
90 |
+
mp_drawing = mp.solutions.drawing_utils # Supported Mediapipe visualization tools
|
91 |
+
pose = mp_pose.Pose(min_detection_confidence=threshold1, min_tracking_confidence=threshold2) # mediapipe pose model
|
92 |
+
|
93 |
+
## Real Time Machine Learning and Computer Vision Processes
|
94 |
+
class VideoProcessor:
|
95 |
+
def __init__(self):
|
96 |
+
# Parameters
|
97 |
+
self.actions = np.array(['curl', 'press', 'squat'])
|
98 |
+
self.sequence_length = 30
|
99 |
+
self.colors = [(245,117,16), (117,245,16), (16,117,245)]
|
100 |
+
self.threshold = threshold3
|
101 |
+
|
102 |
+
# Detection variables
|
103 |
+
self.sequence = []
|
104 |
+
self.current_action = ''
|
105 |
+
|
106 |
+
# Rep counter logic variables
|
107 |
+
self.curl_counter = 0
|
108 |
+
self.press_counter = 0
|
109 |
+
self.squat_counter = 0
|
110 |
+
self.curl_stage = None
|
111 |
+
self.press_stage = None
|
112 |
+
self.squat_stage = None
|
113 |
+
|
114 |
+
@st.cache()
|
115 |
+
def draw_landmarks(self, image, results):
|
116 |
+
"""
|
117 |
+
This function draws keypoints and landmarks detected by the human pose estimation model
|
118 |
+
|
119 |
+
"""
|
120 |
+
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
121 |
+
mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
|
122 |
+
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2)
|
123 |
+
)
|
124 |
+
return
|
125 |
+
|
126 |
+
@st.cache()
|
127 |
+
def extract_keypoints(self, results):
|
128 |
+
"""
|
129 |
+
Processes and organizes the keypoints detected from the pose estimation model
|
130 |
+
to be used as inputs for the exercise decoder models
|
131 |
+
|
132 |
+
"""
|
133 |
+
pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4)
|
134 |
+
return pose
|
135 |
+
|
136 |
+
@st.cache()
|
137 |
+
def calculate_angle(self, a,b,c):
|
138 |
+
"""
|
139 |
+
Computes 3D joint angle inferred by 3 keypoints and their relative positions to one another
|
140 |
+
|
141 |
+
"""
|
142 |
+
a = np.array(a) # First
|
143 |
+
b = np.array(b) # Mid
|
144 |
+
c = np.array(c) # End
|
145 |
+
|
146 |
+
radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
|
147 |
+
angle = np.abs(radians*180.0/np.pi)
|
148 |
+
|
149 |
+
if angle > 180.0:
|
150 |
+
angle = 360-angle
|
151 |
+
|
152 |
+
return angle
|
153 |
+
|
154 |
+
@st.cache()
|
155 |
+
def get_coordinates(self, landmarks, mp_pose, side, joint):
|
156 |
+
"""
|
157 |
+
Retrieves x and y coordinates of a particular keypoint from the pose estimation model
|
158 |
+
|
159 |
+
Args:
|
160 |
+
landmarks: processed keypoints from the pose estimation model
|
161 |
+
mp_pose: Mediapipe pose estimation model
|
162 |
+
side: 'left' or 'right'. Denotes the side of the body of the landmark of interest.
|
163 |
+
joint: 'shoulder', 'elbow', 'wrist', 'hip', 'knee', or 'ankle'. Denotes which body joint is associated with the landmark of interest.
|
164 |
+
|
165 |
+
"""
|
166 |
+
coord = getattr(mp_pose.PoseLandmark,side.upper()+"_"+joint.upper())
|
167 |
+
x_coord_val = landmarks[coord.value].x
|
168 |
+
y_coord_val = landmarks[coord.value].y
|
169 |
+
return [x_coord_val, y_coord_val]
|
170 |
+
|
171 |
+
@st.cache()
|
172 |
+
def viz_joint_angle(self, image, angle, joint):
|
173 |
+
"""
|
174 |
+
Displays the joint angle value near the joint within the image frame
|
175 |
+
|
176 |
+
"""
|
177 |
+
cv2.putText(image, str(int(angle)),
|
178 |
+
tuple(np.multiply(joint, [640, 480]).astype(int)),
|
179 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA
|
180 |
+
)
|
181 |
+
return
|
182 |
+
|
183 |
+
@st.cache()
|
184 |
+
def count_reps(self, image, landmarks, mp_pose):
|
185 |
+
"""
|
186 |
+
Counts repetitions of each exercise. Global count and stage (i.e., state) variables are updated within this function.
|
187 |
+
|
188 |
+
"""
|
189 |
+
|
190 |
+
if self.current_action == 'curl':
|
191 |
+
# Get coords
|
192 |
+
shoulder = self.get_coordinates(landmarks, mp_pose, 'left', 'shoulder')
|
193 |
+
elbow = self.get_coordinates(landmarks, mp_pose, 'left', 'elbow')
|
194 |
+
wrist = self.get_coordinates(landmarks, mp_pose, 'left', 'wrist')
|
195 |
+
|
196 |
+
# calculate elbow angle
|
197 |
+
angle = self.calculate_angle(shoulder, elbow, wrist)
|
198 |
+
|
199 |
+
# curl counter logic
|
200 |
+
if angle < 30:
|
201 |
+
self.curl_stage = "up"
|
202 |
+
if angle > 140 and self.curl_stage =='up':
|
203 |
+
self.curl_stage="down"
|
204 |
+
self.curl_counter +=1
|
205 |
+
self.press_stage = None
|
206 |
+
self.squat_stage = None
|
207 |
+
|
208 |
+
# Viz joint angle
|
209 |
+
self.viz_joint_angle(image, angle, elbow)
|
210 |
+
|
211 |
+
elif self.current_action == 'press':
|
212 |
+
# Get coords
|
213 |
+
shoulder = self.get_coordinates(landmarks, mp_pose, 'left', 'shoulder')
|
214 |
+
elbow = self.get_coordinates(landmarks, mp_pose, 'left', 'elbow')
|
215 |
+
wrist = self.get_coordinates(landmarks, mp_pose, 'left', 'wrist')
|
216 |
+
|
217 |
+
# Calculate elbow angle
|
218 |
+
elbow_angle = self.calculate_angle(shoulder, elbow, wrist)
|
219 |
+
|
220 |
+
# Compute distances between joints
|
221 |
+
shoulder2elbow_dist = abs(math.dist(shoulder,elbow))
|
222 |
+
shoulder2wrist_dist = abs(math.dist(shoulder,wrist))
|
223 |
+
|
224 |
+
# Press counter logic
|
225 |
+
if (elbow_angle > 130) and (shoulder2elbow_dist < shoulder2wrist_dist):
|
226 |
+
self.press_stage = "up"
|
227 |
+
if (elbow_angle < 50) and (shoulder2elbow_dist > shoulder2wrist_dist) and (self.press_stage =='up'):
|
228 |
+
self.press_stage='down'
|
229 |
+
self.press_counter += 1
|
230 |
+
self.curl_stage = None
|
231 |
+
self.squat_stage = None
|
232 |
+
|
233 |
+
# Viz joint angle
|
234 |
+
self.viz_joint_angle(image, elbow_angle, elbow)
|
235 |
+
|
236 |
+
elif self.current_action == 'squat':
|
237 |
+
# Get coords
|
238 |
+
# left side
|
239 |
+
left_shoulder = self.get_coordinates(landmarks, mp_pose, 'left', 'shoulder')
|
240 |
+
left_hip = self.get_coordinates(landmarks, mp_pose, 'left', 'hip')
|
241 |
+
left_knee = self.get_coordinates(landmarks, mp_pose, 'left', 'knee')
|
242 |
+
left_ankle = self.get_coordinates(landmarks, mp_pose, 'left', 'ankle')
|
243 |
+
# right side
|
244 |
+
right_shoulder = self.get_coordinates(landmarks, mp_pose, 'right', 'shoulder')
|
245 |
+
right_hip = self.get_coordinates(landmarks, mp_pose, 'right', 'hip')
|
246 |
+
right_knee = self.get_coordinates(landmarks, mp_pose, 'right', 'knee')
|
247 |
+
right_ankle = self.get_coordinates(landmarks, mp_pose, 'right', 'ankle')
|
248 |
+
|
249 |
+
# Calculate knee angles
|
250 |
+
left_knee_angle = self.calculate_angle(left_hip, left_knee, left_ankle)
|
251 |
+
right_knee_angle = self.calculate_angle(right_hip, right_knee, right_ankle)
|
252 |
+
|
253 |
+
# Calculate hip angles
|
254 |
+
left_hip_angle = self.calculate_angle(left_shoulder, left_hip, left_knee)
|
255 |
+
right_hip_angle = self.calculate_angle(right_shoulder, right_hip, right_knee)
|
256 |
+
|
257 |
+
# Squat counter logic
|
258 |
+
thr = 165
|
259 |
+
if (left_knee_angle < thr) and (right_knee_angle < thr) and (left_hip_angle < thr) and (right_hip_angle < thr):
|
260 |
+
self.squat_stage = "down"
|
261 |
+
if (left_knee_angle > thr) and (right_knee_angle > thr) and (left_hip_angle > thr) and (right_hip_angle > thr) and (self.squat_stage =='down'):
|
262 |
+
self.squat_stage='up'
|
263 |
+
self.squat_counter += 1
|
264 |
+
self.curl_stage = None
|
265 |
+
self.press_stage = None
|
266 |
+
|
267 |
+
# Viz joint angles
|
268 |
+
self.viz_joint_angle(image, left_knee_angle, left_knee)
|
269 |
+
self.viz_joint_angle(image, left_hip_angle, left_hip)
|
270 |
+
|
271 |
+
else:
|
272 |
+
pass
|
273 |
+
return
|
274 |
+
|
275 |
+
@st.cache()
|
276 |
+
def prob_viz(self, res, input_frame):
|
277 |
+
"""
|
278 |
+
This function displays the model prediction probability distribution over the set of exercise classes
|
279 |
+
as a horizontal bar graph
|
280 |
+
|
281 |
+
"""
|
282 |
+
output_frame = input_frame.copy()
|
283 |
+
for num, prob in enumerate(res):
|
284 |
+
cv2.rectangle(output_frame, (0,60+num*40), (int(prob*100), 90+num*40), self.colors[num], -1)
|
285 |
+
cv2.putText(output_frame, self.actions[num], (0, 85+num*40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2, cv2.LINE_AA)
|
286 |
+
|
287 |
+
return output_frame
|
288 |
+
|
289 |
+
@st.cache()
|
290 |
+
def process(self, image):
|
291 |
+
"""
|
292 |
+
Function to process the video frame from the user's webcam and run the fitness trainer AI
|
293 |
+
|
294 |
+
Args:
|
295 |
+
image (numpy array): input image from the webcam
|
296 |
+
|
297 |
+
Returns:
|
298 |
+
numpy array: processed image with keypoint detection and fitness activity classification visualized
|
299 |
+
"""
|
300 |
+
# Pose detection model
|
301 |
+
image.flags.writeable = False
|
302 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
303 |
+
results = pose.process(image)
|
304 |
+
|
305 |
+
# Draw the hand annotations on the image.
|
306 |
+
image.flags.writeable = True
|
307 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
308 |
+
self.draw_landmarks(image, results)
|
309 |
+
|
310 |
+
# Prediction logic
|
311 |
+
keypoints = self.extract_keypoints(results)
|
312 |
+
self.sequence.append(keypoints.astype('float32',casting='same_kind'))
|
313 |
+
self.sequence = self.sequence[-self.sequence_length:]
|
314 |
+
|
315 |
+
if len(self.sequence) == self.sequence_length:
|
316 |
+
res = model.predict(np.expand_dims(self.sequence, axis=0), verbose=0)[0]
|
317 |
+
# interpreter.set_tensor(self.input_details[0]['index'], np.expand_dims(self.sequence, axis=0))
|
318 |
+
# interpreter.invoke()
|
319 |
+
# res = interpreter.get_tensor(self.output_details[0]['index'])
|
320 |
+
|
321 |
+
self.current_action = self.actions[np.argmax(res)]
|
322 |
+
confidence = np.max(res)
|
323 |
+
|
324 |
+
# Erase current action variable if no probability is above threshold
|
325 |
+
if confidence < self.threshold:
|
326 |
+
self.current_action = ''
|
327 |
+
|
328 |
+
# Viz probabilities
|
329 |
+
image = self.prob_viz(res, image)
|
330 |
+
|
331 |
+
# Count reps
|
332 |
+
try:
|
333 |
+
landmarks = results.pose_landmarks.landmark
|
334 |
+
self.count_reps(
|
335 |
+
image, landmarks, mp_pose)
|
336 |
+
except:
|
337 |
+
pass
|
338 |
+
|
339 |
+
# Display graphical information
|
340 |
+
cv2.rectangle(image, (0,0), (640, 40), self.colors[np.argmax(res)], -1)
|
341 |
+
cv2.putText(image, 'curl ' + str(self.curl_counter), (3,30),
|
342 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
|
343 |
+
cv2.putText(image, 'press ' + str(self.press_counter), (240,30),
|
344 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
|
345 |
+
cv2.putText(image, 'squat ' + str(self.squat_counter), (490,30),
|
346 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
|
347 |
+
|
348 |
+
# return cv2.flip(image, 1)
|
349 |
+
return image
|
350 |
+
|
351 |
+
def recv(self, frame):
|
352 |
+
"""
|
353 |
+
Receive and process video stream from webcam
|
354 |
+
|
355 |
+
Args:
|
356 |
+
frame: current video frame
|
357 |
+
|
358 |
+
Returns:
|
359 |
+
av.VideoFrame: processed video frame
|
360 |
+
"""
|
361 |
+
img = frame.to_ndarray(format="bgr24")
|
362 |
+
img = self.process(img)
|
363 |
+
return av.VideoFrame.from_ndarray(img, format="bgr24")
|
364 |
+
|
365 |
+
## Stream Webcam Video and Run Model
|
366 |
+
# Options
|
367 |
+
RTC_CONFIGURATION = RTCConfiguration(
|
368 |
+
{"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}
|
369 |
+
)
|
370 |
+
# Streamer
|
371 |
+
webrtc_ctx = webrtc_streamer(
|
372 |
+
key="AI trainer",
|
373 |
+
mode=WebRtcMode.SENDRECV,
|
374 |
+
rtc_configuration=RTC_CONFIGURATION,
|
375 |
+
media_stream_constraints={"video": True, "audio": False},
|
376 |
+
video_processor_factory=VideoProcessor,
|
377 |
+
async_processing=True,
|
378 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
streamlit_webrtc
|
3 |
+
keras==2.10.0
|
4 |
+
notebook==6.4.11
|
5 |
+
numpy==1.23.0
|
6 |
+
Markdown==3.3.7
|
7 |
+
ipykernel==6.9.1
|
8 |
+
ipython==8.3.0
|
9 |
+
mediapipe==0.9.1.0
|
10 |
+
pillow==9.1.1
|
11 |
+
opencv-python==4.6.0.66
|
12 |
+
opencv-contrib-python==4.6.0.66
|
13 |
+
tensorflow ==2.10.0
|