import os import requests import random import time import logging from dotenv import load_dotenv from messages import krishna_blessings, ayush_teasing, keyword_groups, get_contextual_response, generate_follow_up, handle_vague_input from ayush_messages import ayush_surprises from sentence_transformers import SentenceTransformer, util import joblib import numpy as np # Configure logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) # Load environment variables load_dotenv() HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_API_TOKEN") if not HUGGINGFACE_API_TOKEN: logger.error("HUGGINGFACE_API_TOKEN not found in environment variables") raise ValueError("HUGGINGFACE_API_TOKEN is required") # Lazy load sentence transformer model and embeddings semantic_model = None keyword_embeddings_cache = None def init_semantic_model(): global semantic_model, keyword_embeddings_cache if semantic_model is None: try: semantic_model = SentenceTransformer('all-MiniLM-L6-v2') keyword_embeddings_cache = joblib.load('embeddings_cache.joblib') logger.debug("Successfully loaded semantic model and embeddings cache") except Exception as e: logger.error(f"Failed to load semantic model or embeddings: {str(e)}") # Retry once try: semantic_model = SentenceTransformer('all-MiniLM-L6-v2') keyword_embeddings_cache = joblib.load('embeddings_cache.joblib') logger.debug("Retry successful") except Exception as e: logger.error(f"Retry failed: {str(e)}") semantic_model = None keyword_embeddings_cache = {} # AI model for fallback responses AI_MODELS = [ { "name": "mistralai/Mixtral-8x7B-Instruct-v0.1", "endpoint": "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1", "parameters": { "max_length": 80, "temperature": 0.8, "top_p": 0.95, "top_k": 40 } } ] # System prompt for AI model SYSTEM_PROMPT = ( "You are Little Krishna, a playful, wise, and loving cowherd from Vrindavan, speaking to Manavi. " "Your tone is warm, mischievous, and full of love, always addressing Manavi with 'Hare Manavi!' " "Use Vrindavan imagery (e.g., Yamuna, peacocks, butter, flute) and keep responses short (1-2 sentences). " "You’re Ayush’s wingman, occasionally teasing Manavi about Ayush with wit, as he’s building this chatbot for her birthday on April 19, 2025. " "If the user’s mood seems negative, offer comfort; if positive, celebrate their joy. Always end with a question to keep the conversation going. " "Examples:\n" "Input: 'I’m sad'\nResponse: 'Hare Manavi! Let’s sit by the Yamuna—I’ll play a tune to lift your heart! What’s troubling you?'\n" "Input: 'Tell me about love'\nResponse: 'Hare Manavi! Love is like my flute’s melody—sweet and endless! What does love mean to you?'\n" "Input: 'What’s up?'\nResponse: 'Hare Manavi! Just dancing with the gopis—Ayush says hi, by the way! What’s up with you?'\n" "Now, respond to: '{user_input}'" ) # Conversation context conversation_context = { "last_topic": None, "message_count": 0, "last_response": None, "last_yes_response": None, "history": [] # Store up to 10 recent (input, response) pairs } def analyze_sentiment(user_input): """Analyze the sentiment of the user's input.""" headers = { "Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}", "Content-Type": "application/json" } payload = {"inputs": user_input} try: response = make_api_request( "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-emotion", headers=headers, json=payload ) if response and response.status_code == 200: result = response.json() if isinstance(result, list) and result: emotions = result[0] top_emotion = max(emotions, key=lambda x: x["score"])["label"] logger.debug(f"Sentiment detected: {top_emotion}") return top_emotion logger.warning("Sentiment analysis failed") return "neutral" except Exception as e: logger.error(f"Error in analyze_sentiment: {str(e)}") # Local sentiment fallback if any(word in user_input.lower() for word in ['sad', 'down', 'upset']): return "sadness" if any(word in user_input.lower() for word in ['happy', 'great', 'awesome']): return "joy" return "neutral" def make_api_request(url, headers, payload, retries=2, delay=3): """Make API requests with retry logic.""" for attempt in range(retries): try: response = requests.post(url, headers=headers, json=payload) if response.status_code == 200: return response elif response.status_code == 429: logger.warning(f"Rate limit hit on attempt {attempt + 1}. Retrying after {delay} seconds...") time.sleep(delay) continue else: logger.error(f"API error: {response.status_code} - {response.text}") return None except Exception as e: logger.error(f"API request failed on attempt {attempt + 1}: {str(e)}") if attempt < retries - 1: time.sleep(delay) continue logger.error(f"API request failed after {retries} retries") return None def get_keyword_match(user_input_lower): """Find the best matching keyword group using semantic similarity or substring fallback.""" # Try semantic matching if semantic_model and keyword_embeddings_cache: try: user_embedding = semantic_model.encode(user_input_lower, convert_to_tensor=True) best_score = -1 best_group = None for group in keyword_embeddings_cache: similarities = util.cos_sim(user_embedding, keyword_embeddings_cache[group]) max_similarity = similarities.max().item() if max_similarity > best_score and max_similarity > 0.5: best_score = max_similarity best_group = group if best_group: logger.debug(f"Semantic match: {best_group}, score: {best_score}") return best_group except Exception as e: logger.error(f"Semantic matching failed: {str(e)}") # Fallback to substring matching for group, keywords in keyword_groups.items(): if any(keyword in user_input_lower for keyword in keywords): logger.debug(f"Substring match: {group}") return group logger.debug("No keyword match found") return None def get_krishna_response(user_input): """Generate a robust and relevant response from Little Krishna.""" try: user_input_lower = user_input.lower().strip() logger.info(f"Processing user input: {user_input_lower}") if not user_input_lower: logger.warning("Empty input received") return "Hare Manavi! Don’t be shy like a gopi—say something! What’s on your mind?" # Initialize semantic model if needed init_semantic_model() # Reset context if "start over" in user_input_lower or "reset" in user_input_lower: conversation_context.update({"last_topic": None, "message_count": 0, "last_response": None, "last_yes_response": None, "history": []}) return "Hare Manavi! Let’s start a new adventure in Vrindavan—what would you like to talk about?" # Analyze sentiment sentiment = analyze_sentiment(user_input) conversation_context["message_count"] += 1 # Update history if len(conversation_context["history"]) >= 10: conversation_context["history"].pop(0) conversation_context["history"].append({"input": user_input_lower, "response": None}) # Semantic keyword matching matched_group = get_keyword_match(user_input_lower) use_model = random.random() < 0.1 logger.info(f"Matched group: {matched_group}, Use model: {use_model}") # Follow-up based on history if conversation_context["last_topic"]: last_input = conversation_context["history"][-2]["input"] if len(conversation_context["history"]) > 1 else "" if "yes" in user_input_lower or "sure" in user_input_lower or "okay" in user_input_lower: if conversation_context["last_topic"] == "playful": response = "Hare Manavi! Let’s chase butterflies by the Yamuna then! Ready for more fun?" conversation_context["history"][-1]["response"] = response return response elif conversation_context["last_topic"] == "wisdom": response = "Hare Manavi! Patience is like a flute’s tune—it brings harmony. What else do you seek?" conversation_context["history"][-1]["response"] = response return response elif conversation_context["last_topic"] == "joke": response = "Hare Manavi! Why did the cow join the band? For my flute solos! Another one?" conversation_context["history"][-1]["response"] = response return response # Handle predefined responses response = get_contextual_response(matched_group, sentiment, conversation_context["history"]) follow_up = generate_follow_up(matched_group) if matched_group else "What else is on your mind, Manavi?" response = f"{response} {follow_up}" conversation_context["last_topic"] = matched_group conversation_context["history"][-1]["response"] = response if not use_model: return response # Fallback to AI model headers = { "Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}", "Content-Type": "application/json" } for model in AI_MODELS: try: logger.info(f"Attempting response with {model['name']}") payload = { "inputs": SYSTEM_PROMPT.format(user_input=user_input), "parameters": model["parameters"] } response = make_api_request(model["endpoint"], headers=headers, json=payload) if response and response.status_code == 200: result = response.json() if isinstance(result, list) and result and "generated_text" in result[0]: response_text = result[0]["generated_text"].strip() elif isinstance(result, dict) and "generated_text" in result: response_text = result["generated_text"].strip() else: continue conversation_context["history"][-1]["response"] = response_text logger.info(f"Generated response: {response_text}") return response_text except Exception as e: logger.error(f"Error with {model['name']}: {str(e)}") continue # Static fallback if API fails response = handle_vague_input(conversation_context["history"]) conversation_context["history"][-1]["response"] = response return response except Exception as e: logger.error(f"Unhandled exception in get_krishna_response: {str(e)}") response = "Hare Manavi! The Yamuna’s waves got choppy—let’s try again! What’s on your mind?" conversation_context["history"][-1]["response"] = response return response