Update chatbot.py
Browse files- chatbot.py +76 -70
chatbot.py
CHANGED
@@ -4,31 +4,45 @@ import random
|
|
4 |
import time
|
5 |
import logging
|
6 |
from dotenv import load_dotenv
|
7 |
-
from messages import krishna_blessings, ayush_teasing, keyword_groups
|
8 |
from ayush_messages import ayush_surprises
|
9 |
from sentence_transformers import SentenceTransformer, util
|
10 |
import joblib
|
11 |
import numpy as np
|
12 |
|
13 |
# Configure logging
|
14 |
-
logging.basicConfig(level=logging.
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
# Load environment variables
|
18 |
load_dotenv()
|
19 |
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_API_TOKEN")
|
20 |
if not HUGGINGFACE_API_TOKEN:
|
21 |
-
logger.error("HUGGINGFACE_API_TOKEN not found in environment variables
|
22 |
-
raise ValueError("HUGGINGFACE_API_TOKEN is required
|
23 |
|
24 |
# Lazy load sentence transformer model and embeddings
|
25 |
semantic_model = None
|
26 |
-
keyword_embeddings_cache =
|
27 |
|
28 |
def init_semantic_model():
|
29 |
-
global semantic_model
|
30 |
if semantic_model is None:
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# AI model for fallback responses
|
34 |
AI_MODELS = [
|
@@ -64,7 +78,7 @@ conversation_context = {
|
|
64 |
"message_count": 0,
|
65 |
"last_response": None,
|
66 |
"last_yes_response": None,
|
67 |
-
"history": [] # Store up to
|
68 |
}
|
69 |
|
70 |
def analyze_sentiment(user_input):
|
@@ -85,10 +99,17 @@ def analyze_sentiment(user_input):
|
|
85 |
if isinstance(result, list) and result:
|
86 |
emotions = result[0]
|
87 |
top_emotion = max(emotions, key=lambda x: x["score"])["label"]
|
|
|
88 |
return top_emotion
|
|
|
89 |
return "neutral"
|
90 |
except Exception as e:
|
91 |
logger.error(f"Error in analyze_sentiment: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
92 |
return "neutral"
|
93 |
|
94 |
def make_api_request(url, headers, payload, retries=2, delay=3):
|
@@ -103,37 +124,56 @@ def make_api_request(url, headers, payload, retries=2, delay=3):
|
|
103 |
time.sleep(delay)
|
104 |
continue
|
105 |
else:
|
106 |
-
logger.error(f"API error: {response.text}")
|
107 |
return None
|
108 |
except Exception as e:
|
109 |
logger.error(f"API request failed on attempt {attempt + 1}: {str(e)}")
|
110 |
if attempt < retries - 1:
|
111 |
time.sleep(delay)
|
112 |
continue
|
113 |
-
logger.error(f"API request failed after {retries} retries
|
114 |
return None
|
115 |
|
116 |
def get_keyword_match(user_input_lower):
|
117 |
-
"""Find the best matching keyword group using semantic similarity."""
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
def get_krishna_response(user_input):
|
133 |
-
"""Generate a response from Little Krishna."""
|
134 |
try:
|
135 |
user_input_lower = user_input.lower().strip()
|
136 |
logger.info(f"Processing user input: {user_input_lower}")
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
# Reset context
|
139 |
if "start over" in user_input_lower or "reset" in user_input_lower:
|
@@ -142,17 +182,16 @@ def get_krishna_response(user_input):
|
|
142 |
|
143 |
# Analyze sentiment
|
144 |
sentiment = analyze_sentiment(user_input)
|
145 |
-
logger.info(f"Sentiment detected: {sentiment}")
|
146 |
conversation_context["message_count"] += 1
|
147 |
|
148 |
# Update history
|
149 |
-
if len(conversation_context["history"]) >=
|
150 |
conversation_context["history"].pop(0)
|
151 |
conversation_context["history"].append({"input": user_input_lower, "response": None})
|
152 |
|
153 |
# Semantic keyword matching
|
154 |
matched_group = get_keyword_match(user_input_lower)
|
155 |
-
use_model = random.random() < 0.
|
156 |
logger.info(f"Matched group: {matched_group}, Use model: {use_model}")
|
157 |
|
158 |
# Follow-up based on history
|
@@ -173,45 +212,12 @@ def get_krishna_response(user_input):
|
|
173 |
return response
|
174 |
|
175 |
# Handle predefined responses
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
"wisdom": "What wisdom are you seeking now?",
|
183 |
-
"nature": "Which part of Vrindavan calls to you?",
|
184 |
-
"encourage": "What’s your next brave step?",
|
185 |
-
"friend": "What’s a special moment you’d like to share?",
|
186 |
-
"chat": "What’s on your mind, Manavi?",
|
187 |
-
"birthday": "What’s your birthday wish?"
|
188 |
-
}
|
189 |
-
|
190 |
-
if matched_group and not use_model:
|
191 |
-
conversation_context["last_topic"] = matched_group
|
192 |
-
if matched_group == "birthday":
|
193 |
-
response = ayush_surprises.get("birthday", auto_generate_birthday_message(include_tease=True))
|
194 |
-
elif matched_group == "chat":
|
195 |
-
response = krishna_blessings["chat_with_you"]
|
196 |
-
elif matched_group in ayush_teasing and random.choice([True, False]):
|
197 |
-
response = random.choice(ayush_teasing[matched_group])
|
198 |
-
elif matched_group in krishna_blessings:
|
199 |
-
response = krishna_blessings[matched_group]
|
200 |
-
else:
|
201 |
-
response = krishna_blessings.get(matched_group, "Hare Manavi! Let’s explore Vrindavan’s magic!")
|
202 |
-
follow_up = follow_ups.get(matched_group, "What else is on your mind, Manavi?")
|
203 |
-
response = f"{response} {follow_up}"
|
204 |
-
conversation_context["history"][-1]["response"] = response
|
205 |
-
return response
|
206 |
-
|
207 |
-
# Sentiment-based fallback
|
208 |
-
if sentiment in ["sadness", "anger"] and not matched_group and not use_model:
|
209 |
-
response = f"Hare Manavi! I see a shadow on your heart—let’s dance by the Yamuna to bring back your smile! What’s on your mind?"
|
210 |
-
conversation_context["history"][-1]["response"] = response
|
211 |
-
return response
|
212 |
-
elif sentiment == "joy" and not matched_group and not use_model:
|
213 |
-
response = f"Hare Manavi! Your joy lights up Vrindavan—let’s celebrate with a flute melody! What’s making you so happy?"
|
214 |
-
conversation_context["history"][-1]["response"] = response
|
215 |
return response
|
216 |
|
217 |
# Fallback to AI model
|
@@ -242,13 +248,13 @@ def get_krishna_response(user_input):
|
|
242 |
logger.error(f"Error with {model['name']}: {str(e)}")
|
243 |
continue
|
244 |
|
245 |
-
#
|
246 |
-
response = "
|
247 |
conversation_context["history"][-1]["response"] = response
|
248 |
return response
|
249 |
|
250 |
except Exception as e:
|
251 |
logger.error(f"Unhandled exception in get_krishna_response: {str(e)}")
|
252 |
-
response = "Hare Manavi!
|
253 |
conversation_context["history"][-1]["response"] = response
|
254 |
return response
|
|
|
4 |
import time
|
5 |
import logging
|
6 |
from dotenv import load_dotenv
|
7 |
+
from messages import krishna_blessings, ayush_teasing, keyword_groups, get_contextual_response, generate_follow_up, handle_vague_input
|
8 |
from ayush_messages import ayush_surprises
|
9 |
from sentence_transformers import SentenceTransformer, util
|
10 |
import joblib
|
11 |
import numpy as np
|
12 |
|
13 |
# Configure logging
|
14 |
+
logging.basicConfig(level=logging.DEBUG)
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
# Load environment variables
|
18 |
load_dotenv()
|
19 |
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_API_TOKEN")
|
20 |
if not HUGGINGFACE_API_TOKEN:
|
21 |
+
logger.error("HUGGINGFACE_API_TOKEN not found in environment variables")
|
22 |
+
raise ValueError("HUGGINGFACE_API_TOKEN is required")
|
23 |
|
24 |
# Lazy load sentence transformer model and embeddings
|
25 |
semantic_model = None
|
26 |
+
keyword_embeddings_cache = None
|
27 |
|
28 |
def init_semantic_model():
|
29 |
+
global semantic_model, keyword_embeddings_cache
|
30 |
if semantic_model is None:
|
31 |
+
try:
|
32 |
+
semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
|
33 |
+
keyword_embeddings_cache = joblib.load('embeddings_cache.joblib')
|
34 |
+
logger.debug("Successfully loaded semantic model and embeddings cache")
|
35 |
+
except Exception as e:
|
36 |
+
logger.error(f"Failed to load semantic model or embeddings: {str(e)}")
|
37 |
+
# Retry once
|
38 |
+
try:
|
39 |
+
semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
|
40 |
+
keyword_embeddings_cache = joblib.load('embeddings_cache.joblib')
|
41 |
+
logger.debug("Retry successful")
|
42 |
+
except Exception as e:
|
43 |
+
logger.error(f"Retry failed: {str(e)}")
|
44 |
+
semantic_model = None
|
45 |
+
keyword_embeddings_cache = {}
|
46 |
|
47 |
# AI model for fallback responses
|
48 |
AI_MODELS = [
|
|
|
78 |
"message_count": 0,
|
79 |
"last_response": None,
|
80 |
"last_yes_response": None,
|
81 |
+
"history": [] # Store up to 10 recent (input, response) pairs
|
82 |
}
|
83 |
|
84 |
def analyze_sentiment(user_input):
|
|
|
99 |
if isinstance(result, list) and result:
|
100 |
emotions = result[0]
|
101 |
top_emotion = max(emotions, key=lambda x: x["score"])["label"]
|
102 |
+
logger.debug(f"Sentiment detected: {top_emotion}")
|
103 |
return top_emotion
|
104 |
+
logger.warning("Sentiment analysis failed")
|
105 |
return "neutral"
|
106 |
except Exception as e:
|
107 |
logger.error(f"Error in analyze_sentiment: {str(e)}")
|
108 |
+
# Local sentiment fallback
|
109 |
+
if any(word in user_input.lower() for word in ['sad', 'down', 'upset']):
|
110 |
+
return "sadness"
|
111 |
+
if any(word in user_input.lower() for word in ['happy', 'great', 'awesome']):
|
112 |
+
return "joy"
|
113 |
return "neutral"
|
114 |
|
115 |
def make_api_request(url, headers, payload, retries=2, delay=3):
|
|
|
124 |
time.sleep(delay)
|
125 |
continue
|
126 |
else:
|
127 |
+
logger.error(f"API error: {response.status_code} - {response.text}")
|
128 |
return None
|
129 |
except Exception as e:
|
130 |
logger.error(f"API request failed on attempt {attempt + 1}: {str(e)}")
|
131 |
if attempt < retries - 1:
|
132 |
time.sleep(delay)
|
133 |
continue
|
134 |
+
logger.error(f"API request failed after {retries} retries")
|
135 |
return None
|
136 |
|
137 |
def get_keyword_match(user_input_lower):
|
138 |
+
"""Find the best matching keyword group using semantic similarity or substring fallback."""
|
139 |
+
# Try semantic matching
|
140 |
+
if semantic_model and keyword_embeddings_cache:
|
141 |
+
try:
|
142 |
+
user_embedding = semantic_model.encode(user_input_lower, convert_to_tensor=True)
|
143 |
+
best_score = -1
|
144 |
+
best_group = None
|
145 |
+
|
146 |
+
for group in keyword_embeddings_cache:
|
147 |
+
similarities = util.cos_sim(user_embedding, keyword_embeddings_cache[group])
|
148 |
+
max_similarity = similarities.max().item()
|
149 |
+
if max_similarity > best_score and max_similarity > 0.5:
|
150 |
+
best_score = max_similarity
|
151 |
+
best_group = group
|
152 |
+
if best_group:
|
153 |
+
logger.debug(f"Semantic match: {best_group}, score: {best_score}")
|
154 |
+
return best_group
|
155 |
+
except Exception as e:
|
156 |
+
logger.error(f"Semantic matching failed: {str(e)}")
|
157 |
+
|
158 |
+
# Fallback to substring matching
|
159 |
+
for group, keywords in keyword_groups.items():
|
160 |
+
if any(keyword in user_input_lower for keyword in keywords):
|
161 |
+
logger.debug(f"Substring match: {group}")
|
162 |
+
return group
|
163 |
+
logger.debug("No keyword match found")
|
164 |
+
return None
|
165 |
|
166 |
def get_krishna_response(user_input):
|
167 |
+
"""Generate a robust and relevant response from Little Krishna."""
|
168 |
try:
|
169 |
user_input_lower = user_input.lower().strip()
|
170 |
logger.info(f"Processing user input: {user_input_lower}")
|
171 |
+
if not user_input_lower:
|
172 |
+
logger.warning("Empty input received")
|
173 |
+
return "Hare Manavi! Don’t be shy like a gopi—say something! What’s on your mind?"
|
174 |
+
|
175 |
+
# Initialize semantic model if needed
|
176 |
+
init_semantic_model()
|
177 |
|
178 |
# Reset context
|
179 |
if "start over" in user_input_lower or "reset" in user_input_lower:
|
|
|
182 |
|
183 |
# Analyze sentiment
|
184 |
sentiment = analyze_sentiment(user_input)
|
|
|
185 |
conversation_context["message_count"] += 1
|
186 |
|
187 |
# Update history
|
188 |
+
if len(conversation_context["history"]) >= 10:
|
189 |
conversation_context["history"].pop(0)
|
190 |
conversation_context["history"].append({"input": user_input_lower, "response": None})
|
191 |
|
192 |
# Semantic keyword matching
|
193 |
matched_group = get_keyword_match(user_input_lower)
|
194 |
+
use_model = random.random() < 0.1
|
195 |
logger.info(f"Matched group: {matched_group}, Use model: {use_model}")
|
196 |
|
197 |
# Follow-up based on history
|
|
|
212 |
return response
|
213 |
|
214 |
# Handle predefined responses
|
215 |
+
response = get_contextual_response(matched_group, sentiment, conversation_context["history"])
|
216 |
+
follow_up = generate_follow_up(matched_group) if matched_group else "What else is on your mind, Manavi?"
|
217 |
+
response = f"{response} {follow_up}"
|
218 |
+
conversation_context["last_topic"] = matched_group
|
219 |
+
conversation_context["history"][-1]["response"] = response
|
220 |
+
if not use_model:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
return response
|
222 |
|
223 |
# Fallback to AI model
|
|
|
248 |
logger.error(f"Error with {model['name']}: {str(e)}")
|
249 |
continue
|
250 |
|
251 |
+
# Static fallback if API fails
|
252 |
+
response = handle_vague_input(conversation_context["history"])
|
253 |
conversation_context["history"][-1]["response"] = response
|
254 |
return response
|
255 |
|
256 |
except Exception as e:
|
257 |
logger.error(f"Unhandled exception in get_krishna_response: {str(e)}")
|
258 |
+
response = "Hare Manavi! The Yamuna’s waves got choppy—let’s try again! What’s on your mind?"
|
259 |
conversation_context["history"][-1]["response"] = response
|
260 |
return response
|