import os
import urllib.request
import gradio as gr
from llama_cpp import Llama


def download_file(file_link, filename):
    # Checks if the file already exists before downloading
    if not os.path.isfile(filename):
        urllib.request.urlretrieve(file_link, filename)
        print("File downloaded successfully.")
    else:
        print("File already exists.")


# Dowloading GGML model from HuggingFace
ggml_model_path = "https://huggingface.co/TheBloke/Starling-LM-7B-alpha-GGUF/resolve/main/starling-lm-7b-alpha.Q4_K_S.gguf"
filename = "starling-lm-7b-alpha.Q4_K_S.gguf"

download_file(ggml_model_path, filename)


llm = Llama(model_path=filename, n_ctx=512, n_batch=126)

def create_prompt(text):
    prompt = f"""GPT4 Correct User: {text}<|end_of_turn|>GPT4 Correct Assistant:"""
    return prompt

def generate_text(prompt="Who is the CEO of Apple?"):
    input_text = create_prompt(prompt)
    output = llm(
        input_text,
        max_tokens=256,
        temperature=0.1,
        top_p=0.5,
        echo=False,
        stop=["#"],
    )
    output_text = output["choices"][0]["text"].strip()

    # Remove Prompt Echo from Generated Text
    cleaned_output_text = output_text.replace(prompt, "")
    return cleaned_output_text


description = "Starling-7B GGUF"

gradio_interface = gr.Interface(
    fn=generate_text,
    inputs="text",
    outputs="text",
    title="Starling-7B GGUF",
)
gradio_interface.launch()