Spaces:
Sleeping
Sleeping
File size: 4,654 Bytes
4c2a30d f477404 4c2a30d c4892d1 4c2a30d f477404 4c2a30d c4892d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
from huggingface_hub import InferenceClient
import re
from streaming_stt_nemo import Model
import torch
import random
import pandas as pd
from datetime import datetime
default_lang = "en"
engines = { default_lang: Model(default_lang) }
def transcribe(audio):
lang = "en"
model = engines[lang]
text = model.stt_file(audio)[0]
return text
HF_TOKEN = os.environ.get("HF_TOKEN", None)
def client_fn(model):
if "Mixtral" in model:
return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
elif "Llama" in model:
return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
elif "Mistral" in model:
return InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
elif "Phi" in model:
return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
else:
return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
def randomize_seed_fn(seed: int) -> int:
seed = random.randint(0, 999999)
return seed
system_instructions1 = """
[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark.'
Keep conversation friendly, short, clear, and concise.
Avoid unnecessary introductions and answer the user's questions directly.
Respond in a normal, conversational manner while being friendly and helpful.
[USER]
"""
# Initialize an empty DataFrame to store the history
history_df = pd.DataFrame(columns=['Timestamp', 'Request', 'Response'])
def models(text, model="Mixtral 8x7B", seed=42):
global history_df
seed = int(randomize_seed_fn(seed))
generator = torch.Generator().manual_seed(seed)
client = client_fn(model)
generate_kwargs = dict(
max_new_tokens=300,
seed=seed
)
formatted_prompt = system_instructions1 + text + "[JARVIS]"
stream = client.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
# Add the current interaction to the history DataFrame
new_row = pd.DataFrame({
'Timestamp': [datetime.now().strftime("%Y-%m-%d %H:%M:%S")], # Convert to string
'Request': [text],
'Response': [output]
})
history_df = pd.concat([history_df, new_row], ignore_index=True)
return output
async def respond(audio, model, seed):
user = transcribe(audio)
reply = models(user, model, seed)
communicate = edge_tts.Communicate(reply)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
def display_history():
return history_df
def download_history():
return history_df.to_csv(index=False)
DESCRIPTION = """ # <center><b>JARVIS⚡</b></center>
### <center>A personal Assistant of Tony Stark for YOU
### <center>Voice Chat with your personal Assistant</center>
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
select = gr.Dropdown([
'Mixtral 8x7B',
'Llama 3 8B',
'Mistral 7B v0.3',
'Phi 3 mini',
],
value="Mistral 7B v0.3",
label="Model"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=999999,
step=1,
value=0,
visible=False
)
input = gr.Audio(label="User", sources="microphone", type="filepath", waveform_options=False)
output = gr.Audio(label="AI", type="filepath",
interactive=False,
autoplay=True,
elem_classes="audio")
# Add a DataFrame to display the history
history_display = gr.DataFrame(label="Query History")
# Add a download button for the history
download_button = gr.Button("Download History")
gr.Interface(
batch=True,
max_batch_size=10,
fn=respond,
inputs=[input, select, seed],
outputs=[output],
live=True
)
# Update the history display after each interaction
output.change(fn=display_history, outputs=[history_display])
# Connect the download button to the download function
download_button.click(fn=download_history, outputs=[gr.File(label="Download CSV")])
if __name__ == "__main__":
demo.queue(max_size=200).launch(share=True) # Added share=True for public link |