import streamlit as st import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile import plotly.graph_objects as go import streamlit.components.v1 as components from datetime import datetime from audio_recorder_streamlit import audio_recorder from bs4 import BeautifulSoup from collections import defaultdict, deque from dotenv import load_dotenv from gradio_client import Client from huggingface_hub import InferenceClient from io import BytesIO from PIL import Image from PyPDF2 import PdfReader from urllib.parse import quote from xml.etree import ElementTree as ET from openai import OpenAI import extra_streamlit_components as stx from streamlit.runtime.scriptrunner import get_script_run_ctx import asyncio import edge_tts import io import sys # 1. Core Configuration & Setup st.set_page_config( page_title="🚲BikeAIπŸ† Claude/GPT Research", page_icon="πŸš²πŸ†", layout="wide", initial_sidebar_state="auto", menu_items={ 'Get Help': 'https://huggingface.co/awacke1', 'Report a bug': 'https://huggingface.co/spaces/awacke1', 'About': "🚲BikeAIπŸ† Claude/GPT Research AI" } ) load_dotenv() # 2. API Setup & Clients openai_api_key = os.getenv('OPENAI_API_KEY', "") anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "") if 'OPENAI_API_KEY' in st.secrets: openai_api_key = st.secrets['OPENAI_API_KEY'] if 'ANTHROPIC_API_KEY' in st.secrets: anthropic_key = st.secrets["ANTHROPIC_API_KEY"] openai.api_key = openai_api_key claude_client = anthropic.Anthropic(api_key=anthropic_key) openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) HF_KEY = os.getenv('HF_KEY') API_URL = os.getenv('API_URL') # 3. Session State Management if 'transcript_history' not in st.session_state: st.session_state['transcript_history'] = [] if 'chat_history' not in st.session_state: st.session_state['chat_history'] = [] if 'openai_model' not in st.session_state: st.session_state['openai_model'] = "gpt-4o-2024-05-13" if 'messages' not in st.session_state: st.session_state['messages'] = [] if 'last_voice_input' not in st.session_state: st.session_state['last_voice_input'] = "" if 'editing_file' not in st.session_state: st.session_state['editing_file'] = None if 'edit_new_name' not in st.session_state: st.session_state['edit_new_name'] = "" if 'edit_new_content' not in st.session_state: st.session_state['edit_new_content'] = "" if 'viewing_prefix' not in st.session_state: st.session_state['viewing_prefix'] = None if 'should_rerun' not in st.session_state: st.session_state['should_rerun'] = False if 'old_val' not in st.session_state: st.session_state['old_val'] = None # 4. Custom CSS st.markdown(""" """, unsafe_allow_html=True) FILE_EMOJIS = { "md": "πŸ“", "mp3": "🎡", } # 5. High-Information Content Extraction def get_high_info_terms(text: str) -> list: """Extract high-information terms from text, including key phrases""" stop_words = set([ 'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', 'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these', 'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there' ]) key_phrases = [ 'artificial intelligence', 'machine learning', 'deep learning', 'neural network', 'personal assistant', 'natural language', 'computer vision', 'data science', 'reinforcement learning', 'knowledge graph', 'semantic search', 'time series', 'large language model', 'transformer model', 'attention mechanism', 'autonomous system', 'edge computing', 'quantum computing', 'blockchain technology', 'cognitive science', 'human computer', 'decision making', 'arxiv search', 'research paper', 'scientific study', 'empirical analysis' ] # First identify key phrases preserved_phrases = [] lower_text = text.lower() for phrase in key_phrases: if phrase in lower_text: preserved_phrases.append(phrase) text = text.replace(phrase, '') # Then extract individual high-info words words = re.findall(r'\b\w+(?:-\w+)*\b', text) high_info_words = [ word.lower() for word in words if len(word) > 3 and word.lower() not in stop_words and not word.isdigit() and any(c.isalpha() for c in word) ] # Combine and deduplicate while preserving order all_terms = preserved_phrases + high_info_words seen = set() unique_terms = [] for term in all_terms: if term not in seen: seen.add(term) unique_terms.append(term) max_terms = 5 return unique_terms[:max_terms] # 6. Filename Generation def generate_filename(content, file_type="md"): prefix = datetime.now().strftime("%y%m_%H%M") + "_" info_terms = get_high_info_terms(content) name_text = '_'.join(term.replace(' ', '-') for term in info_terms) if info_terms else 'file' max_length = 100 if len(name_text) > max_length: name_text = name_text[:max_length] filename = f"{prefix}{name_text}.{file_type}" return filename # 7. Audio Processing def clean_for_speech(text: str) -> str: """Clean text for speech synthesis""" text = text.replace("\n", " ") text = text.replace("", " ") text = text.replace("#", "") text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) text = re.sub(r"\s+", " ", text).strip() return text @st.cache_resource def speech_synthesis_html(result): """Create HTML for speech synthesis""" html_code = f""" """ components.html(html_code, height=0) async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0): """Generate audio using Edge TTS""" text = clean_for_speech(text) if not text.strip(): return None rate_str = f"{rate:+d}%" pitch_str = f"{pitch:+d}Hz" communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) out_fn = generate_filename(text, "mp3") await communicate.save(out_fn) return out_fn def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0): """Wrapper for edge TTS generation""" return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch)) def play_and_download_audio(file_path): """Play and provide download link for audio""" if file_path and os.path.exists(file_path): st.audio(file_path) dl_link = f'Download {os.path.basename(file_path)}' st.markdown(dl_link, unsafe_allow_html=True) # 8. Media Processing def process_image(image_path, user_prompt): """Process image with GPT-4V""" with open(image_path, "rb") as imgf: image_data = imgf.read() b64img = base64.b64encode(image_data).decode("utf-8") resp = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": [ {"type": "text", "text": user_prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}} ]} ], temperature=0.0, ) return resp.choices[0].message.content def process_audio(audio_path): """Process audio with Whisper""" with open(audio_path, "rb") as f: transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f) st.session_state.messages.append({"role": "user", "content": transcription.text}) return transcription.text def process_video(video_path, seconds_per_frame=1): """Extract frames from video""" vid = cv2.VideoCapture(video_path) total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) fps = vid.get(cv2.CAP_PROP_FPS) skip = int(fps*seconds_per_frame) frames_b64 = [] for i in range(0, total, skip): vid.set(cv2.CAP_PROP_POS_FRAMES, i) ret, frame = vid.read() if not ret: break _, buf = cv2.imencode(".jpg", frame) frames_b64.append(base64.b64encode(buf).decode("utf-8")) vid.release() return frames_b64 def process_video_with_gpt(video_path, prompt): """Analyze video frames with GPT-4V""" frames = process_video(video_path) resp = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role":"system","content":"Analyze video frames."}, {"role":"user","content":[ {"type":"text","text":prompt}, *[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames] ]} ] ) return resp.choices[0].message.content # 9. AI Model Integration def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False): """Perform Arxiv search and generate audio summaries""" start = time.time() client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") r = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md") refs = r[0] r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm") result = f"### πŸ”Ž {q}\n\n{r2}\n\n{refs}" st.markdown(result) # Generate full audio version if requested if full_audio: complete_text = f"Complete response for query: {q}. {clean_for_speech(r2)} {clean_for_speech(refs)}" audio_file_full = speak_with_edge_tts(complete_text) st.write("### πŸ“š Complete Audio Response") play_and_download_audio(audio_file_full) if vocal_summary: main_text = clean_for_speech(r2) audio_file_main = speak_with_edge_tts(main_text) st.write("### πŸŽ™οΈ Vocal Summary (Short Answer)") play_and_download_audio(audio_file_main) if extended_refs: summaries_text = "Here are the summaries from the references: " + refs.replace('"','') summaries_text = clean_for_speech(summaries_text) audio_file_refs = speak_with_edge_tts(summaries_text) st.write("### πŸ“œ Extended References & Summaries") play_and_download_audio(audio_file_refs) if titles_summary: titles = [] for line in refs.split('\n'): m = re.search(r"\[([^\]]+)\]", line) if m: titles.append(m.group(1)) if titles: titles_text = "Here are the titles of the papers: " + ", ".join(titles) titles_text = clean_for_speech(titles_text) audio_file_titles = speak_with_edge_tts(titles_text) st.write("### πŸ”– Paper Titles") play_and_download_audio(audio_file_titles) elapsed = time.time()-start st.write(f"**Total Elapsed:** {elapsed:.2f} s") # We must provide a filename for the create_file function: # Use generate_filename from 'q' and 'result' filename = generate_filename(result, "md") create_file(filename, q, result, should_save=True) # --- Code Interpreter Integration --- # Parse out papers from refs if available # Format assumed: # [Title] Title of Paper # Summary: ... # Link: ... # PDF: ... # separate by "[Title]" papers_raw = refs.strip().split("[Title]") papers = [] for p in papers_raw: p = p.strip() if not p: continue lines = p.split("\n") title_line = lines[0].strip() if lines else "" summary_line = "" link_line = "" pdf_line = "" for line in lines[1:]: line = line.strip() if line.startswith("Summary:"): summary_line = line.replace("Summary:", "").strip() elif line.startswith("Link:"): link_line = line.replace("Link:", "").strip() elif line.startswith("PDF:"): pdf_line = line.replace("PDF:", "").strip() if title_line and summary_line: papers.append({ "title": title_line, "summary": summary_line, "link": link_line, "pdf": pdf_line }) st.write("## Code Interpreter Options for Each Paper") for i, paper in enumerate(papers): st.write(f"**Paper {i+1}:** {paper['title']}") st.write(f"**Summary:** {paper['summary']}") if paper['link']: st.write(f"[Arxiv Link]({paper['link']})") if paper['pdf']: st.write(f"[PDF]({paper['pdf']})") code_interpreter = st.checkbox(f"Code Interpreter for '{paper['title']}'", key=f"ci_{i}") if code_interpreter: code_task = st.text_area( f"Describe the Python/Streamlit functionality to implement based on this paper:", height=100, key=f"code_task_{i}" ) if st.button(f"Generate Code for Paper {i+1}", key=f"gen_code_{i}"): if code_task.strip(): # Prompt the model to generate code code_prompt = f""" You are a coding assistant. The user has a research paper titled: "{paper['title']}" and summary: "{paper['summary']}". The user wants the following functionality implemented in Python with Streamlit and possible HTML5 components: "{code_task}" Requirements: - The code should be self-contained Python code, runnable within this Streamlit environment. - It should use `streamlit` library for UI and `print()` for textual outputs. - Provide only the Python code block, do not include extra explanations. """ completion = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role": "system", "content": "You are a helpful coding assistant."}, {"role": "user", "content": code_prompt} ], temperature=0.0 ) generated_code = completion.choices[0].message.content st.write("### Generated Code") st.code(generated_code, language="python") # Execute the generated code exec_locals = {} original_stdout = sys.stdout redirected_output = io.StringIO() sys.stdout = redirected_output try: exec(generated_code, {}, exec_locals) except Exception as e: st.error(f"Error running generated code: {e}") finally: sys.stdout = original_stdout code_output = redirected_output.getvalue() st.write("### Code Output") st.write(code_output) # TTS on code output if code_output.strip(): audio_file = speak_with_edge_tts(code_output) if audio_file: play_and_download_audio(audio_file) return result def process_with_gpt(text): """Process text with GPT-4""" if not text: return st.session_state.messages.append({"role":"user","content":text}) with st.chat_message("user"): st.markdown(text) with st.chat_message("assistant"): c = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=st.session_state.messages, stream=False ) ans = c.choices[0].message.content st.write("GPT-4o: " + ans) filename = generate_filename(ans.strip() if ans.strip() else text.strip(), "md") create_file(filename, text, ans, should_save=True) st.session_state.messages.append({"role":"assistant","content":ans}) return ans def process_with_claude(text): """Process text with Claude""" if not text: return with st.chat_message("user"): st.markdown(text) with st.chat_message("assistant"): r = claude_client.messages.create( model="claude-3-sonnet-20240229", max_tokens=1000, messages=[{"role":"user","content":text}] ) ans = r.content[0].text st.write("Claude-3.5: " + ans) filename = generate_filename(ans.strip() if ans.strip() else text.strip(), "md") create_file(filename, text, ans, should_save=True) st.session_state.chat_history.append({"user":text,"claude":ans}) return ans # 10. File Management def create_zip_of_files(md_files, mp3_files): """Create zip with intelligent naming""" md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] all_files = md_files + mp3_files if not all_files: return None all_content = [] for f in all_files: if f.endswith('.md'): with open(f, 'r', encoding='utf-8') as file: all_content.append(file.read()) elif f.endswith('.mp3'): all_content.append(os.path.basename(f)) combined_content = " ".join(all_content) info_terms = get_high_info_terms(combined_content) timestamp = datetime.now().strftime("%y%m_%H%M") name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3]) zip_name = f"{timestamp}_{name_text}.zip" with zipfile.ZipFile(zip_name,'w') as z: for f in all_files: z.write(f) return zip_name def load_files_for_sidebar(): """Load and group files for sidebar display""" md_files = glob.glob("*.md") mp3_files = glob.glob("*.mp3") md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] all_files = md_files + mp3_files groups = defaultdict(list) for f in all_files: fname = os.path.basename(f) prefix = fname[:10] groups[prefix].append(f) for prefix in groups: groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True) sorted_prefixes = sorted(groups.keys(), key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]), reverse=True) return groups, sorted_prefixes def extract_keywords_from_md(files): """Extract keywords from markdown files""" text = "" for f in files: if f.endswith(".md"): c = open(f,'r',encoding='utf-8').read() text += " " + c return get_high_info_terms(text) def display_file_manager_sidebar(groups, sorted_prefixes): """Display file manager in sidebar""" st.sidebar.title("🎡 Audio & Document Manager") all_md = [] all_mp3 = [] for prefix in groups: for f in groups[prefix]: if f.endswith(".md"): all_md.append(f) elif f.endswith(".mp3"): all_mp3.append(f) top_bar = st.sidebar.columns(3) with top_bar[0]: if st.button("πŸ—‘ Del All MD"): for f in all_md: os.remove(f) st.session_state.should_rerun = True with top_bar[1]: if st.button("πŸ—‘ Del All MP3"): for f in all_mp3: os.remove(f) st.session_state.should_rerun = True with top_bar[2]: if st.button("⬇️ Zip All"): z = create_zip_of_files(all_md, all_mp3) if z: with open(z, "rb") as f: b64 = base64.b64encode(f.read()).decode() dl_link = f'πŸ“‚ Download {os.path.basename(z)}' st.sidebar.markdown(dl_link,unsafe_allow_html=True) for prefix in sorted_prefixes: files = groups[prefix] kw = extract_keywords_from_md(files) keywords_str = " ".join(kw) if kw else "No Keywords" with st.sidebar.expander(f"{prefix} Files ({len(files)}) - Keywords: {keywords_str}", expanded=True): c1,c2 = st.columns(2) with c1: if st.button("πŸ‘€View Group", key="view_group_"+prefix): st.session_state.viewing_prefix = prefix with c2: if st.button("πŸ—‘Del Group", key="del_group_"+prefix): for f in files: os.remove(f) st.success(f"Deleted all files in group {prefix} successfully!") st.session_state.should_rerun = True for f in files: fname = os.path.basename(f) ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") st.write(f"**{fname}** - {ctime}") # 11. New create_file function context = {} # Execution context for code blocks def create_file(filename, prompt, response, should_save=True): if not should_save: return base_filename, ext = os.path.splitext(filename) combined_content = "" # Add Prompt with markdown title and emoji combined_content += "# Prompt πŸ“\n" + prompt + "\n\n" # Add Response with markdown title and emoji combined_content += "# Response πŸ’¬\n" + response + "\n\n" # Check for code blocks in the response resources = re.findall(r"```([\s\S]*?)```", response) for resource in resources: # Check if the resource contains Python code if "python" in resource.lower(): cleaned_code = re.sub(r'^\s*python', '', resource, flags=re.IGNORECASE | re.MULTILINE) # Add Code Results title with markdown and emoji combined_content += "# Code Results πŸš€\n" original_stdout = sys.stdout sys.stdout = io.StringIO() try: exec(cleaned_code, context) code_output = sys.stdout.getvalue() combined_content += f"```\n{code_output}\n```\n\n" realtimeEvalResponse = "# Code Results πŸš€\n" + "```" + code_output + "```\n\n" st.code(realtimeEvalResponse) except Exception as e: combined_content += f"```python\nError executing Python code: {e}\n```\n\n" sys.stdout = original_stdout else: # Add non-Python resources with markdown and emoji combined_content += "# Resource πŸ› οΈ\n" + "```" + resource + "```\n\n" # Save the combined content to a Markdown file if should_save: with open(f"{base_filename}.md", 'w') as file: file.write(combined_content) st.code(combined_content) # Create a Base64 encoded link for the file with open(f"{base_filename}.md", 'rb') as file: encoded_file = base64.b64encode(file.read()).decode() href = f'Download File πŸ“„' st.markdown(href, unsafe_allow_html=True) # 12. Main Application def main(): st.sidebar.markdown("### 🚲BikeAIπŸ† Multi-Agent Research AI") tab_main = st.radio("Action:",["🎀 Voice Input","πŸ“Έ Media Gallery","πŸ” Search ArXiv","πŸ“ File Editor"],horizontal=True) mycomponent = components.declare_component("mycomponent", path="mycomponent") val = mycomponent(my_input_value="Hello") # Show input in a text box for editing if detected if val: val_stripped = val.replace('\n', ' ') edited_input = st.text_area("Edit your detected input:", value=val_stripped, height=100) run_option = st.selectbox("Select AI Model:", ["Arxiv", "GPT-4o", "Claude-3.5"]) col1, col2 = st.columns(2) with col1: autorun = st.checkbox("AutoRun on input change", value=False) with col2: full_audio = st.checkbox("Generate Complete Audio", value=False, help="Generate audio for the complete response including all papers and summaries") input_changed = (val != st.session_state.old_val) if autorun and input_changed: st.session_state.old_val = val if run_option == "Arxiv": perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=full_audio) else: if run_option == "GPT-4o": process_with_gpt(edited_input) elif run_option == "Claude-3.5": process_with_claude(edited_input) else: if st.button("Process Input"): st.session_state.old_val = val if run_option == "Arxiv": perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=full_audio) else: if run_option == "GPT-4o": process_with_gpt(edited_input) elif run_option == "Claude-3.5": process_with_claude(edited_input) if tab_main == "πŸ” Search ArXiv": st.subheader("πŸ” Search ArXiv") q = st.text_input("Research query:") st.markdown("### πŸŽ›οΈ Audio Generation Options") vocal_summary = st.checkbox("πŸŽ™οΈ Vocal Summary (Short Answer)", value=True) extended_refs = st.checkbox("πŸ“œ Extended References & Summaries (Long)", value=False) titles_summary = st.checkbox("πŸ”– Paper Titles Only", value=True) full_audio = st.checkbox("πŸ“š Generate Complete Audio Response", value=False, help="Generate audio for the complete response including all papers and summaries") if q and st.button("Run ArXiv Query"): perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, titles_summary=titles_summary, full_audio=full_audio) elif tab_main == "🎀 Voice Input": st.subheader("🎀 Voice Recognition") user_text = st.text_area("Message:", height=100) user_text = user_text.strip().replace('\n', ' ') if st.button("Send πŸ“¨"): process_with_gpt(user_text) st.subheader("πŸ“œ Chat History") t1,t2=st.tabs(["Claude History","GPT-4o History"]) with t1: for c in st.session_state.chat_history: st.write("**You:**", c["user"]) st.write("**Claude:**", c["claude"]) with t2: for m in st.session_state.messages: with st.chat_message(m["role"]): st.markdown(m["content"]) elif tab_main == "πŸ“Έ Media Gallery": st.header("🎬 Media Gallery - Images and Videos") tabs = st.tabs(["πŸ–ΌοΈ Images", "πŸŽ₯ Video"]) with tabs[0]: imgs = glob.glob("*.png")+glob.glob("*.jpg") if imgs: c = st.slider("Cols",1,5,3) cols = st.columns(c) for i,f in enumerate(imgs): with cols[i%c]: st.image(Image.open(f),use_container_width=True) if st.button(f"πŸ‘€ Analyze {os.path.basename(f)}", key=f"analyze_{f}"): a = process_image(f,"Describe this image.") st.markdown(a) else: st.write("No images found.") with tabs[1]: vids = glob.glob("*.mp4") if vids: for v in vids: with st.expander(f"πŸŽ₯ {os.path.basename(v)}"): st.video(v) if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"): a = process_video_with_gpt(v,"Describe video.") st.markdown(a) else: st.write("No videos found.") elif tab_main == "πŸ“ File Editor": if getattr(st.session_state,'current_file',None): st.subheader(f"Editing: {st.session_state.current_file}") new_text = st.text_area("Content:", st.session_state.file_content, height=300) if st.button("Save"): with open(st.session_state.current_file,'w',encoding='utf-8') as f: f.write(new_text) st.success("Updated!") st.session_state.should_rerun = True else: st.write("Select a file from the sidebar to edit.") groups, sorted_prefixes = load_files_for_sidebar() display_file_manager_sidebar(groups, sorted_prefixes) if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups: st.write("---") st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}") for f in groups[st.session_state.viewing_prefix]: fname = os.path.basename(f) ext = os.path.splitext(fname)[1].lower().strip('.') st.write(f"### {fname}") if ext == "md": content = open(f,'r',encoding='utf-8').read() st.markdown(content) elif ext == "mp3": st.audio(f) else: with open(f, "rb") as file: b64 = base64.b64encode(file.read()).decode() dl_link = f'Download {fname}' st.markdown(dl_link, unsafe_allow_html=True) if st.button("Close Group View"): st.session_state.viewing_prefix = None if st.session_state.should_rerun: st.session_state.should_rerun = False st.rerun() if __name__=="__main__": main()