import streamlit as st import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile import plotly.graph_objects as go import streamlit.components.v1 as components from datetime import datetime from audio_recorder_streamlit import audio_recorder from bs4 import BeautifulSoup from collections import defaultdict, deque from dotenv import load_dotenv from gradio_client import Client from huggingface_hub import InferenceClient from io import BytesIO from PIL import Image from PyPDF2 import PdfReader from urllib.parse import quote from xml.etree import ElementTree as ET from openai import OpenAI import extra_streamlit_components as stx from streamlit.runtime.scriptrunner import get_script_run_ctx import asyncio import edge_tts # πŸ”§ Config & Setup st.set_page_config( page_title="🚲BikeAIπŸ† Claude/GPT Research", page_icon="πŸš²πŸ†", layout="wide", initial_sidebar_state="auto", menu_items={ 'Get Help': 'https://huggingface.co/awacke1', 'Report a bug': 'https://huggingface.co/spaces/awacke1', 'About': "🚲BikeAIπŸ† Claude/GPT Research AI" } ) load_dotenv() openai.api_key = os.getenv('OPENAI_API_KEY') or st.secrets['OPENAI_API_KEY'] anthropic_key = os.getenv("ANTHROPIC_API_KEY_3") or st.secrets["ANTHROPIC_API_KEY"] claude_client = anthropic.Anthropic(api_key=anthropic_key) openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) HF_KEY = os.getenv('HF_KEY') API_URL = os.getenv('API_URL') # Session states if 'transcript_history' not in st.session_state: st.session_state['transcript_history'] = [] if 'chat_history' not in st.session_state: st.session_state['chat_history'] = [] if 'openai_model' not in st.session_state: st.session_state['openai_model'] = "gpt-4o-2024-05-13" if 'messages' not in st.session_state: st.session_state['messages'] = [] if 'last_voice_input' not in st.session_state: st.session_state['last_voice_input'] = "" if 'editing_file' not in st.session_state: st.session_state['editing_file'] = None if 'edit_new_name' not in st.session_state: st.session_state['edit_new_name'] = "" if 'edit_new_content' not in st.session_state: st.session_state['edit_new_content'] = "" if 'viewing_file' not in st.session_state: st.session_state['viewing_file'] = None if 'viewing_file_type' not in st.session_state: st.session_state['viewing_file_type'] = None if 'should_rerun' not in st.session_state: st.session_state['should_rerun'] = False # 🎨 Minimal Custom CSS st.markdown(""" """, unsafe_allow_html=True) FILE_EMOJIS = { "md": "πŸ“", "mp3": "🎡", } def generate_filename(prompt, file_type="md"): ctz = pytz.timezone('US/Central') date_str = datetime.now(ctz).strftime("%m%d_%H%M") safe = re.sub(r'[<>:"/\\\\|?*\n]', ' ', prompt) safe = re.sub(r'\s+', ' ', safe).strip()[:90] return f"{date_str}_{safe}.{file_type}" def create_file(filename, prompt, response): # Creating file does not trigger immediate rerun with open(filename, 'w', encoding='utf-8') as f: f.write(prompt + "\n\n" + response) def get_download_link(file): with open(file, "rb") as f: b64 = base64.b64encode(f.read()).decode() return f'πŸ“‚ Download {os.path.basename(file)}' @st.cache_resource def speech_synthesis_html(result): html_code = f""" """ components.html(html_code, height=0) async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0): # Just create mp3 file, no immediate rerun if not text.strip(): return None rate_str = f"{rate:+d}%" pitch_str = f"{pitch:+d}Hz" communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) out_fn = generate_filename(text,"mp3") await communicate.save(out_fn) return out_fn def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0): return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch)) def play_and_download_audio(file_path): if file_path and os.path.exists(file_path): st.audio(file_path) dl_link = f'Download {os.path.basename(file_path)}' st.markdown(dl_link, unsafe_allow_html=True) def process_image(image_path, user_prompt): with open(image_path, "rb") as imgf: image_data = imgf.read() b64img = base64.b64encode(image_data).decode("utf-8") resp = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": [ {"type": "text", "text": user_prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}} ]} ], temperature=0.0, ) return resp.choices[0].message.content def process_audio(audio_path): with open(audio_path, "rb") as f: transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f) st.session_state.messages.append({"role": "user", "content": transcription.text}) # No immediate rerun return transcription.text def process_video(video_path, seconds_per_frame=1): vid = cv2.VideoCapture(video_path) total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) fps = vid.get(cv2.CAP_PROP_FPS) skip = int(fps*seconds_per_frame) frames_b64 = [] for i in range(0, total, skip): vid.set(cv2.CAP_PROP_POS_FRAMES, i) ret, frame = vid.read() if not ret: break _, buf = cv2.imencode(".jpg", frame) frames_b64.append(base64.b64encode(buf).decode("utf-8")) vid.release() return frames_b64 def process_video_with_gpt(video_path, prompt): frames = process_video(video_path) resp = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role":"system","content":"Analyze video frames."}, {"role":"user","content":[ {"type":"text","text":prompt}, *[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames] ]} ] ) return resp.choices[0].message.content def search_arxiv(query): st.write("πŸ” Searching ArXiv...") client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") r1 = client.predict(prompt=query, llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", stream_outputs=True, api_name="/ask_llm") st.markdown("### Mistral-8x7B-Instruct-v0.1 Result") st.markdown(r1) r2 = client.predict(prompt=query, llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", stream_outputs=True, api_name="/ask_llm") st.markdown("### Mistral-7B-Instruct-v0.2 Result") st.markdown(r2) return f"{r1}\n\n{r2}" def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True): start = time.time() client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") r = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md") refs = r[0] r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm") result = f"### πŸ”Ž {q}\n\n{r2}\n\n{refs}" st.markdown(result) if vocal_summary: audio_file_main = speak_with_edge_tts(r2, voice="en-US-AriaNeural", rate=0, pitch=0) st.write("### πŸŽ™οΈ Vocal Summary (Short Answer)") play_and_download_audio(audio_file_main) if extended_refs: summaries_text = "Here are the summaries from the references: " + refs.replace('"','') audio_file_refs = speak_with_edge_tts(summaries_text, voice="en-US-AriaNeural", rate=0, pitch=0) st.write("### πŸ“œ Extended References & Summaries") play_and_download_audio(audio_file_refs) if titles_summary: titles = [] for line in refs.split('\n'): m = re.search(r"\[([^\]]+)\]", line) if m: titles.append(m.group(1)) if titles: titles_text = "Here are the titles of the papers: " + ", ".join(titles) audio_file_titles = speak_with_edge_tts(titles_text, voice="en-US-AriaNeural", rate=0, pitch=0) st.write("### πŸ”– Paper Titles") play_and_download_audio(audio_file_titles) elapsed = time.time()-start st.write(f"**Total Elapsed:** {elapsed:.2f} s") fn = generate_filename(q,"md") create_file(fn,q,result) return result def process_with_gpt(text): if not text: return st.session_state.messages.append({"role":"user","content":text}) with st.chat_message("user"): st.markdown(text) with st.chat_message("assistant"): c = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=st.session_state.messages, stream=False ) ans = c.choices[0].message.content st.write("GPT-4o: " + ans) create_file(generate_filename(text,"md"),text,ans) st.session_state.messages.append({"role":"assistant","content":ans}) return ans def process_with_claude(text): if not text: return with st.chat_message("user"): st.markdown(text) with st.chat_message("assistant"): r = claude_client.messages.create( model="claude-3-sonnet-20240229", max_tokens=1000, messages=[{"role":"user","content":text}] ) ans = r.content[0].text st.write("Claude: " + ans) create_file(generate_filename(text,"md"),text,ans) st.session_state.chat_history.append({"user":text,"claude":ans}) return ans def create_zip_of_files(md_files, mp3_files): # Exclude README.md if present md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] all_files = md_files + mp3_files if not all_files: return None # Build a descriptive name from file stems stems = [os.path.splitext(os.path.basename(f))[0] for f in all_files] # Join them joined = "_".join(stems) # Truncate if too long if len(joined) > 50: joined = joined[:50] + "_etc" zip_name = f"{joined}.zip" with zipfile.ZipFile(zip_name,'w') as z: for f in all_files: z.write(f) return zip_name def get_media_html(p,typ="video",w="100%"): d = base64.b64encode(open(p,'rb').read()).decode() if typ=="video": return f'' else: return f'' def load_files_for_sidebar(): # Gather all md and mp3 files md_files = glob.glob("*.md") mp3_files = glob.glob("*.mp3") # Exclude README.md from listings md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] files_by_ext = defaultdict(list) if md_files: files_by_ext['md'].extend(md_files) if mp3_files: files_by_ext['mp3'].extend(mp3_files) # Sort each extension group by modification time descending for ext in files_by_ext: files_by_ext[ext].sort(key=lambda x: os.path.getmtime(x), reverse=True) return files_by_ext def display_file_manager_sidebar(files_by_ext): st.sidebar.title("🎡 Audio & Document Manager") md_files = files_by_ext.get('md', []) mp3_files = files_by_ext.get('mp3', []) # Buttons to delete all except README.md (already excluded) col_del = st.sidebar.columns(3) with col_del[0]: if st.button("πŸ—‘ Del All MD"): for f in md_files: os.remove(f) st.session_state.should_rerun = True with col_del[1]: if st.button("πŸ—‘ Del All MP3"): for f in mp3_files: os.remove(f) st.session_state.should_rerun = True with col_del[2]: if st.button("⬇️ Zip All"): # create a zip of all md and mp3 except README.md z = create_zip_of_files(md_files, mp3_files) if z: st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True) ext_counts = {ext: len(files) for ext, files in files_by_ext.items()} sorted_ext = sorted(files_by_ext.keys(), key=lambda x: ext_counts[x], reverse=True) # Display files with actions for ext in sorted_ext: emoji = FILE_EMOJIS.get(ext, "πŸ“¦") count = len(files_by_ext[ext]) with st.sidebar.expander(f"{emoji} {ext.upper()} Files ({count})", expanded=True): for f in files_by_ext[ext]: fname = os.path.basename(f) ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") # Show filename and buttons in a row st.write(f"**{fname}** - {ctime}") file_buttons_col = st.columns([1,1,1]) with file_buttons_col[0]: if st.button("πŸ‘€View", key="view_"+f): st.session_state.viewing_file = f st.session_state.viewing_file_type = ext # No rerun needed, just set state with file_buttons_col[1]: if ext == "md": if st.button("✏️Edit", key="edit_"+f): st.session_state.editing_file = f st.session_state.edit_new_name = fname.replace(".md","") st.session_state.edit_new_content = open(f,'r',encoding='utf-8').read() st.session_state.should_rerun = True with file_buttons_col[2]: if st.button("πŸ—‘Del", key="del_"+f): os.remove(f) st.session_state.should_rerun = True # If editing an md file if st.session_state.editing_file and os.path.exists(st.session_state.editing_file): st.sidebar.subheader(f"Editing: {os.path.basename(st.session_state.editing_file)}") st.session_state.edit_new_name = st.sidebar.text_input("New name (no extension):", value=st.session_state.edit_new_name) st.session_state.edit_new_content = st.sidebar.text_area("Content:", st.session_state.edit_new_content, height=200) c1,c2 = st.sidebar.columns(2) with c1: if st.button("Save"): old_path = st.session_state.editing_file new_path = st.session_state.edit_new_name + ".md" if new_path != os.path.basename(old_path): os.rename(old_path, new_path) with open(new_path,'w',encoding='utf-8') as f: f.write(st.session_state.edit_new_content) st.session_state.editing_file = None st.session_state.should_rerun = True with c2: if st.button("Cancel"): st.session_state.editing_file = None st.session_state.should_rerun = True def main(): st.sidebar.markdown("### 🚲BikeAIπŸ† Multi-Agent Research AI") tab_main = st.radio("Action:",["🎀 Voice Input","πŸ“Έ Media Gallery","πŸ” Search ArXiv","πŸ“ File Editor"],horizontal=True) model_choice = st.sidebar.radio("AI Model:", ["Arxiv","GPT-4o","Claude-3","GPT+Claude+Arxiv"], index=0) # Main Input Component mycomponent = components.declare_component("mycomponent", path="mycomponent") val = mycomponent(my_input_value="Hello") if val: user_input = val.strip() if user_input: if model_choice == "GPT-4o": process_with_gpt(user_input) elif model_choice == "Claude-3": process_with_claude(user_input) elif model_choice == "Arxiv": st.subheader("Arxiv Only Results:") perform_ai_lookup(user_input, vocal_summary=True, extended_refs=False, titles_summary=True) else: col1,col2,col3=st.columns(3) with col1: st.subheader("GPT-4o Omni:") try: process_with_gpt(user_input) except: st.write('GPT 4o error') with col2: st.subheader("Claude-3 Sonnet:") try: process_with_claude(user_input) except: st.write('Claude error') with col3: st.subheader("Arxiv + Mistral:") try: perform_ai_lookup(user_input, vocal_summary=True, extended_refs=False, titles_summary=True) except: st.write("Arxiv error") if tab_main == "πŸ” Search ArXiv": st.subheader("πŸ” Search ArXiv") q=st.text_input("Research query:") # πŸŽ›οΈ Audio Generation Options st.markdown("### πŸŽ›οΈ Audio Generation Options") vocal_summary = st.checkbox("πŸŽ™οΈ Vocal Summary (Short Answer)", value=True) extended_refs = st.checkbox("πŸ“œ Extended References & Summaries (Long)", value=False) titles_summary = st.checkbox("πŸ”– Paper Titles Only", value=True) if q: q = q.strip() if q and st.button("Run ArXiv Query"): perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, titles_summary=titles_summary) elif tab_main == "🎀 Voice Input": st.subheader("🎀 Voice Recognition") user_text = st.text_area("Message:", height=100) user_text = user_text.strip() if st.button("Send πŸ“¨"): if user_text: if model_choice == "GPT-4o": process_with_gpt(user_text) elif model_choice == "Claude-3": process_with_claude(user_text) elif model_choice == "Arxiv": st.subheader("Arxiv Only Results:") perform_ai_lookup(user_text, vocal_summary=True, extended_refs=False, titles_summary=True) else: col1,col2,col3=st.columns(3) with col1: st.subheader("GPT-4o Omni:") process_with_gpt(user_text) with col2: st.subheader("Claude-3 Sonnet:") process_with_claude(user_text) with col3: st.subheader("Arxiv & Mistral:") res = perform_ai_lookup(user_text, vocal_summary=True, extended_refs=False, titles_summary=True) st.markdown(res) st.subheader("πŸ“œ Chat History") t1,t2=st.tabs(["Claude History","GPT-4o History"]) with t1: for c in st.session_state.chat_history: st.write("**You:**", c["user"]) st.write("**Claude:**", c["claude"]) with t2: for m in st.session_state.messages: with st.chat_message(m["role"]): st.markdown(m["content"]) elif tab_main == "πŸ“Έ Media Gallery": st.header("🎬 Media Gallery - Images and Videos") tabs = st.tabs(["πŸ–ΌοΈ Images", "πŸŽ₯ Video"]) with tabs[0]: imgs = glob.glob("*.png")+glob.glob("*.jpg") if imgs: c = st.slider("Cols",1,5,3) cols = st.columns(c) for i,f in enumerate(imgs): with cols[i%c]: st.image(Image.open(f),use_container_width=True) if st.button(f"πŸ‘€ Analyze {os.path.basename(f)}", key=f"analyze_{f}"): a = process_image(f,"Describe this image.") st.markdown(a) else: st.write("No images found.") with tabs[1]: vids = glob.glob("*.mp4") if vids: for v in vids: with st.expander(f"πŸŽ₯ {os.path.basename(v)}"): st.markdown(get_media_html(v,"video"),unsafe_allow_html=True) if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"): a = process_video_with_gpt(v,"Describe video.") st.markdown(a) else: st.write("No videos found.") elif tab_main == "πŸ“ File Editor": if getattr(st.session_state,'current_file',None): st.subheader(f"Editing: {st.session_state.current_file}") new_text = st.text_area("Content:", st.session_state.file_content, height=300) if st.button("Save"): with open(st.session_state.current_file,'w',encoding='utf-8') as f: f.write(new_text) st.success("Updated!") st.session_state.should_rerun = True else: st.write("Select a file from the sidebar to edit.") # After main content, load files and display in sidebar files_by_ext = load_files_for_sidebar() display_file_manager_sidebar(files_by_ext) # If viewing a file, show its content below (in the main area) if st.session_state.viewing_file and os.path.exists(st.session_state.viewing_file): st.write("---") st.write(f"**Viewing File:** {os.path.basename(st.session_state.viewing_file)}") if st.session_state.viewing_file_type == "md": # show markdown content = open(st.session_state.viewing_file,'r',encoding='utf-8').read() st.markdown(content) elif st.session_state.viewing_file_type == "mp3": # show audio st.audio(st.session_state.viewing_file) # Optionally add a "Close View" button if st.button("Close View"): st.session_state.viewing_file = None st.session_state.viewing_file_type = None # If user-triggered changes happened, rerun once at the end if st.session_state.should_rerun: st.session_state.should_rerun = False st.rerun() if __name__=="__main__": main()