import streamlit as st import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile import plotly.graph_objects as go import streamlit.components.v1 as components from datetime import datetime from audio_recorder_streamlit import audio_recorder from bs4 import BeautifulSoup from collections import defaultdict, deque from dotenv import load_dotenv from gradio_client import Client from huggingface_hub import InferenceClient from io import BytesIO from PIL import Image from PyPDF2 import PdfReader from urllib.parse import quote from xml.etree import ElementTree as ET from openai import OpenAI import extra_streamlit_components as stx from streamlit.runtime.scriptrunner import get_script_run_ctx import asyncio import edge_tts # πŸ”§ Config & Setup st.set_page_config( page_title="🚲BikeAIπŸ† Claude/GPT Research", page_icon="πŸš²πŸ†", layout="wide", initial_sidebar_state="auto", menu_items={ 'Get Help': 'https://huggingface.co/awacke1', 'Report a bug': 'https://huggingface.co/spaces/awacke1', 'About': "🚲BikeAIπŸ† Claude/GPT Research AI" } ) load_dotenv() openai_api_key = os.getenv('OPENAI_API_KEY', "") anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "") if 'OPENAI_API_KEY' in st.secrets: openai_api_key = st.secrets['OPENAI_API_KEY'] if 'ANTHROPIC_API_KEY' in st.secrets: anthropic_key = st.secrets["ANTHROPIC_API_KEY"] openai.api_key = openai_api_key claude_client = anthropic.Anthropic(api_key=anthropic_key) openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) HF_KEY = os.getenv('HF_KEY') API_URL = os.getenv('API_URL') if 'transcript_history' not in st.session_state: st.session_state['transcript_history'] = [] if 'chat_history' not in st.session_state: st.session_state['chat_history'] = [] if 'openai_model' not in st.session_state: st.session_state['openai_model'] = "gpt-4o-2024-05-13" if 'messages' not in st.session_state: st.session_state['messages'] = [] if 'last_voice_input' not in st.session_state: st.session_state['last_voice_input'] = "" if 'editing_file' not in st.session_state: st.session_state['editing_file'] = None if 'edit_new_name' not in st.session_state: st.session_state['edit_new_name'] = "" if 'edit_new_content' not in st.session_state: st.session_state['edit_new_content'] = "" if 'viewing_prefix' not in st.session_state: st.session_state['viewing_prefix'] = None if 'should_rerun' not in st.session_state: st.session_state['should_rerun'] = False if 'old_val' not in st.session_state: st.session_state['old_val'] = None # 🎨 Minimal Custom CSS st.markdown(""" """, unsafe_allow_html=True) FILE_EMOJIS = { "md": "πŸ“", "mp3": "🎡", } def clean_for_speech(text: str) -> str: text = text.replace("\n", " ") text = text.replace("", " ") text = text.replace("#", "") # Remove links text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) text = re.sub(r"\s+", " ", text).strip() return text def generate_filename(content, file_type="md"): prefix = datetime.now().strftime("%y%m_%H%M") + "_" words = re.findall(r"\w+", content) name_text = '_'.join(words[:3]) if words else 'file' filename = f"{prefix}{name_text}.{file_type}" return filename def create_file(prompt, response, file_type="md"): filename = generate_filename(response.strip() if response.strip() else prompt.strip(), file_type) with open(filename, 'w', encoding='utf-8') as f: f.write(prompt + "\n\n" + response) return filename def get_download_link(file): with open(file, "rb") as f: b64 = base64.b64encode(f.read()).decode() return f'πŸ“‚ Download {os.path.basename(file)}' @st.cache_resource def speech_synthesis_html(result): html_code = f""" """ components.html(html_code, height=0) async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0): text = clean_for_speech(text) if not text.strip(): return None rate_str = f"{rate:+d}%" pitch_str = f"{pitch:+d}Hz" communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) out_fn = generate_filename(text,"mp3") await communicate.save(out_fn) return out_fn def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0): return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch)) def play_and_download_audio(file_path): if file_path and os.path.exists(file_path): st.audio(file_path) dl_link = f'Download {os.path.basename(file_path)}"' st.markdown(dl_link, unsafe_allow_html=True) def process_image(image_path, user_prompt): with open(image_path, "rb") as imgf: image_data = imgf.read() b64img = base64.b64encode(image_data).decode("utf-8") resp = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": [ {"type": "text", "text": user_prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}} ]} ], temperature=0.0, ) return resp.choices[0].message.content def process_audio(audio_path): with open(audio_path, "rb") as f: transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f) st.session_state.messages.append({"role": "user", "content": transcription.text}) return transcription.text def process_video(video_path, seconds_per_frame=1): vid = cv2.VideoCapture(video_path) total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) fps = vid.get(cv2.CAP_PROP_FPS) skip = int(fps*seconds_per_frame) frames_b64 = [] for i in range(0, total, skip): vid.set(cv2.CAP_PROP_POS_FRAMES, i) ret, frame = vid.read() if not ret: break _, buf = cv2.imencode(".jpg", frame) frames_b64.append(base64.b64encode(buf).decode("utf-8")) vid.release() return frames_b64 def process_video_with_gpt(video_path, prompt): frames = process_video(video_path) resp = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role":"system","content":"Analyze video frames."}, {"role":"user","content":[ {"type":"text","text":prompt}, *[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames] ]} ] ) return resp.choices[0].message.content def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True): start = time.time() client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") r = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md") refs = r[0] r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm") result = f"### πŸ”Ž {q}\n\n{r2}\n\n{refs}" st.markdown(result) if vocal_summary: main_text = clean_for_speech(r2) audio_file_main = speak_with_edge_tts(main_text) st.write("### πŸŽ™οΈ Vocal Summary (Short Answer)") play_and_download_audio(audio_file_main) if extended_refs: summaries_text = "Here are the summaries from the references: " + refs.replace('"','') summaries_text = clean_for_speech(summaries_text) audio_file_refs = speak_with_edge_tts(summaries_text) st.write("### πŸ“œ Extended References & Summaries") play_and_download_audio(audio_file_refs) if titles_summary: titles = [] for line in refs.split('\n'): m = re.search(r"\[([^\]]+)\]", line) if m: titles.append(m.group(1)) if titles: titles_text = "Here are the titles of the papers: " + ", ".join(titles) titles_text = clean_for_speech(titles_text) audio_file_titles = speak_with_edge_tts(titles_text) st.write("### πŸ”– Paper Titles") play_and_download_audio(audio_file_titles) elapsed = time.time()-start st.write(f"**Total Elapsed:** {elapsed:.2f} s") create_file(q, result, "md") return result def process_with_gpt(text): if not text: return st.session_state.messages.append({"role":"user","content":text}) with st.chat_message("user"): st.markdown(text) with st.chat_message("assistant"): c = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=st.session_state.messages, stream=False ) ans = c.choices[0].message.content st.write("GPT-4o: " + ans) create_file(text, ans, "md") st.session_state.messages.append({"role":"assistant","content":ans}) return ans def process_with_claude(text): if not text: return with st.chat_message("user"): st.markdown(text) with st.chat_message("assistant"): r = claude_client.messages.create( model="claude-3-sonnet-20240229", max_tokens=1000, messages=[{"role":"user","content":text}] ) ans = r.content[0].text st.write("Claude-3.5: " + ans) create_file(text, ans, "md") st.session_state.chat_history.append({"user":text,"claude":ans}) return ans def create_zip_of_files(md_files, mp3_files): md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] all_files = md_files + mp3_files if not all_files: return None stems = [os.path.splitext(os.path.basename(f))[0] for f in all_files] joined = "_".join(stems) if len(joined) > 50: joined = joined[:50] + "_etc" zip_name = f"{joined}.zip" with zipfile.ZipFile(zip_name,'w') as z: for f in all_files: z.write(f) return zip_name def load_files_for_sidebar(): md_files = glob.glob("*.md") mp3_files = glob.glob("*.mp3") md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] all_files = md_files + mp3_files groups = defaultdict(list) for f in all_files: fname = os.path.basename(f) prefix = fname[:10] groups[prefix].append(f) for prefix in groups: groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True) sorted_prefixes = sorted(groups.keys(), key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]), reverse=True) return groups, sorted_prefixes def extract_keywords_from_md(files): text = "" for f in files: if f.endswith(".md"): c = open(f,'r',encoding='utf-8').read() text += " " + c words = re.findall(r"\w+", text.lower()) unique_words = [] for w in words: if w not in unique_words: unique_words.append(w) if len(unique_words) == 5: break return unique_words def display_file_manager_sidebar(groups, sorted_prefixes): st.sidebar.title("🎡 Audio & Document Manager") all_md = [] all_mp3 = [] for prefix in groups: for f in groups[prefix]: if f.endswith(".md"): all_md.append(f) elif f.endswith(".mp3"): all_mp3.append(f) top_bar = st.sidebar.columns(3) with top_bar[0]: if st.button("πŸ—‘ Del All MD"): for f in all_md: os.remove(f) st.session_state.should_rerun = True with top_bar[1]: if st.button("πŸ—‘ Del All MP3"): for f in all_mp3: os.remove(f) st.session_state.should_rerun = True with top_bar[2]: if st.button("⬇️ Zip All"): z = create_zip_of_files(all_md, all_mp3) if z: st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True) for prefix in sorted_prefixes: files = groups[prefix] kw = extract_keywords_from_md(files) keywords_str = " ".join(kw) if kw else "No Keywords" with st.sidebar.expander(f"{prefix} Files ({len(files)}) - Keywords: {keywords_str}", expanded=True): c1,c2 = st.columns(2) with c1: if st.button("πŸ‘€View Group", key="view_group_"+prefix): st.session_state.viewing_prefix = prefix with c2: if st.button("πŸ—‘Del Group", key="del_group_"+prefix): for f in files: os.remove(f) st.success(f"Deleted all files in group {prefix} successfully!") st.session_state.should_rerun = True for f in files: fname = os.path.basename(f) ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") st.write(f"**{fname}** - {ctime}") def run_selected_model(option, user_input): user_input = user_input.strip() if option == "Arxiv": st.subheader("Arxiv Only Results:") perform_ai_lookup(user_input, vocal_summary=True, extended_refs=False, titles_summary=True) elif option == "GPT-4o": process_with_gpt(user_input) elif option == "Claude-3.5": process_with_claude(user_input) def main(): st.sidebar.markdown("### 🚲BikeAIπŸ† Multi-Agent Research AI") tab_main = st.radio("Action:",["🎀 Voice Input","πŸ“Έ Media Gallery","πŸ” Search ArXiv","πŸ“ File Editor"],horizontal=True) # Removed the old model_choice radio # Instead, we rely on the dropdown in the Process Input section. mycomponent = components.declare_component("mycomponent", path="mycomponent") val = mycomponent(my_input_value="Hello") # Show input in a text box for editing if detected if val: val_stripped = val.replace('\n', ' ') edited_input = st.text_area("Edit your detected input:", value=val_stripped, height=100) run_option = st.selectbox("Select AI Model:", ["Arxiv", "GPT-4o", "Claude-3.5"]) autorun = st.checkbox("AutoRun on input change", value=False) input_changed = (val != st.session_state.old_val) if autorun and input_changed: # Automatically run the selected model if input changed st.session_state.old_val = val run_selected_model(run_option, edited_input) else: # If not autorun, show a button to run manually if st.button("Process Input"): st.session_state.old_val = val run_selected_model(run_option, edited_input) if tab_main == "πŸ” Search ArXiv": st.subheader("πŸ” Search ArXiv") q=st.text_input("Research query:") st.markdown("### πŸŽ›οΈ Audio Generation Options") vocal_summary = st.checkbox("πŸŽ™οΈ Vocal Summary (Short Answer)", value=True) extended_refs = st.checkbox("πŸ“œ Extended References & Summaries (Long)", value=False) titles_summary = st.checkbox("πŸ”– Paper Titles Only", value=True) if q and st.button("Run ArXiv Query"): perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, titles_summary=titles_summary) elif tab_main == "🎀 Voice Input": st.subheader("🎀 Voice Recognition") user_text = st.text_area("Message:", height=100) user_text = user_text.strip().replace('\n', ' ') if st.button("Send πŸ“¨"): # Default to GPT-4o here, or you could similarly provide options. process_with_gpt(user_text) st.subheader("πŸ“œ Chat History") t1,t2=st.tabs(["Claude History","GPT-4o History"]) with t1: for c in st.session_state.chat_history: st.write("**You:**", c["user"]) st.write("**Claude:**", c["claude"]) with t2: for m in st.session_state.messages: with st.chat_message(m["role"]): st.markdown(m["content"]) elif tab_main == "πŸ“Έ Media Gallery": st.header("🎬 Media Gallery - Images and Videos") tabs = st.tabs(["πŸ–ΌοΈ Images", "πŸŽ₯ Video"]) with tabs[0]: imgs = glob.glob("*.png")+glob.glob("*.jpg") if imgs: c = st.slider("Cols",1,5,3) cols = st.columns(c) for i,f in enumerate(imgs): with cols[i%c]: st.image(Image.open(f),use_container_width=True) if st.button(f"πŸ‘€ Analyze {os.path.basename(f)}", key=f"analyze_{f}"): a = process_image(f,"Describe this image.") st.markdown(a) else: st.write("No images found.") with tabs[1]: vids = glob.glob("*.mp4") if vids: for v in vids: with st.expander(f"πŸŽ₯ {os.path.basename(v)}"): st.video(v) if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"): a = process_video_with_gpt(v,"Describe video.") st.markdown(a) else: st.write("No videos found.") elif tab_main == "πŸ“ File Editor": if getattr(st.session_state,'current_file',None): st.subheader(f"Editing: {st.session_state.current_file}") new_text = st.text_area("Content:", st.session_state.file_content, height=300) if st.button("Save"): with open(st.session_state.current_file,'w',encoding='utf-8') as f: f.write(new_text) st.success("Updated!") st.session_state.should_rerun = True else: st.write("Select a file from the sidebar to edit.") groups, sorted_prefixes = load_files_for_sidebar() display_file_manager_sidebar(groups, sorted_prefixes) if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups: st.write("---") st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}") for f in groups[st.session_state.viewing_prefix]: fname = os.path.basename(f) ext = os.path.splitext(fname)[1].lower().strip('.') st.write(f"### {fname}") if ext == "md": content = open(f,'r',encoding='utf-8').read() st.markdown(content) elif ext == "mp3": st.audio(f) else: st.markdown(get_download_link(f), unsafe_allow_html=True) if st.button("Close Group View"): st.session_state.viewing_prefix = None if st.session_state.should_rerun: st.session_state.should_rerun = False st.rerun() if __name__=="__main__": main()