import streamlit as st import base64 from reportlab.lib.pagesizes import A4 from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from reportlab.lib import colors import io import re # Define the ML outline as a markdown string ml_markdown = """# Cutting-Edge ML Outline ## Core ML Techniques 1. 🌟 **Mixture of Experts (MoE)** - Conditional computation techniques - Sparse gating mechanisms - Training specialized sub-models 2. πŸ”₯ **Supervised Fine-Tuning (SFT) using PyTorch** - Loss function customization - Gradient accumulation strategies - Learning rate schedulers 3. πŸ€– **Large Language Models (LLM) using Transformers** - Attention mechanisms - Tokenization strategies - Position encodings ## Training Methods 4. πŸ“Š **Self-Rewarding Learning using NPS 0-10 and Verbatims** - Custom reward functions - Feedback categorization - Signal extraction from text 5. πŸ‘ **Reinforcement Learning from Human Feedback (RLHF)** - Preference datasets - PPO implementation - KL divergence constraints 6. πŸ”— **MergeKit: Merging Models to Same Embedding Space** - TIES merging - Task arithmetic - SLERP interpolation ## Optimization & Deployment 7. πŸ“ **DistillKit: Model Size Reduction with Spectrum Analysis** - Knowledge distillation - Quantization techniques - Model pruning strategies 8. 🧠 **Agentic RAG Agents using Document Inputs** - Vector database integration - Query planning - Self-reflection mechanisms 9. ⏳ **Longitudinal Data Summarization from Multiple Docs** - Multi-document compression - Timeline extraction - Entity tracking ## Knowledge Representation 10. πŸ“‘ **Knowledge Extraction using Markdown Knowledge Graphs** - Entity recognition - Relationship mapping - Hierarchical structuring 11. πŸ—ΊοΈ **Knowledge Mapping with Mermaid Diagrams** - Flowchart generation - Sequence diagram creation - State diagrams 12. πŸ’» **ML Code Generation with Streamlit/Gradio/HTML5+JS** - Code completion - Unit test generation - Documentation synthesis """ # Process multilevel markdown for PDF output def markdown_to_pdf_content(markdown_text): """Convert markdown text to a format suitable for PDF generation""" lines = markdown_text.strip().split('\n') pdf_content = [] in_list_item = False current_item = None sub_items = [] for line in lines: line = line.strip() if not line: continue if line.startswith('# '): pass elif line.startswith('## '): if current_item and sub_items: pdf_content.append([current_item, sub_items]) sub_items = [] current_item = None section = line.replace('## ', '').strip() pdf_content.append(f"{section}") in_list_item = False elif re.match(r'^\d+\.', line): if current_item and sub_items: pdf_content.append([current_item, sub_items]) sub_items = [] current_item = line.strip() in_list_item = True elif line.startswith('- ') and in_list_item: sub_items.append(line.strip()) else: if not in_list_item: pdf_content.append(line.strip()) if current_item and sub_items: pdf_content.append([current_item, sub_items]) mid_point = len(pdf_content) // 2 left_column = pdf_content[:mid_point] right_column = pdf_content[mid_point:] return left_column, right_column # Main PDF creation using ReportLab def create_main_pdf(markdown_text): """Create a single-page landscape PDF with the outline in two columns""" buffer = io.BytesIO() doc = SimpleDocTemplate( buffer, pagesize=(A4[1], A4[0]), # Landscape leftMargin=50, rightMargin=50, topMargin=50, bottomMargin=50 ) styles = getSampleStyleSheet() story = [] # Create custom styles title_style = styles['Heading1'] title_style.textColor = colors.darkblue title_style.alignment = 1 # Center alignment section_style = ParagraphStyle( 'SectionStyle', parent=styles['Heading2'], textColor=colors.darkblue, spaceAfter=6 ) item_style = ParagraphStyle( 'ItemStyle', parent=styles['Normal'], fontSize=11, leading=14, fontName='Helvetica-Bold' ) subitem_style = ParagraphStyle( 'SubItemStyle', parent=styles['Normal'], fontSize=10, leading=12, leftIndent=20 ) # Add title story.append(Paragraph("Cutting-Edge ML Outline (ReportLab)", title_style)) story.append(Spacer(1, 20)) # Process markdown content left_column, right_column = markdown_to_pdf_content(markdown_text) # Prepare data for table left_cells = [] for item in left_column: if isinstance(item, str) and item.startswith(''): text = item.replace('', '').replace('', '') left_cells.append(Paragraph(text, section_style)) elif isinstance(item, list): main_item, sub_items = item left_cells.append(Paragraph(main_item, item_style)) for sub_item in sub_items: left_cells.append(Paragraph(sub_item, subitem_style)) else: left_cells.append(Paragraph(item, item_style)) right_cells = [] for item in right_column: if isinstance(item, str) and item.startswith(''): text = item.replace('', '').replace('', '') right_cells.append(Paragraph(text, section_style)) elif isinstance(item, list): main_item, sub_items = item right_cells.append(Paragraph(main_item, item_style)) for sub_item in sub_items: right_cells.append(Paragraph(sub_item, subitem_style)) else: right_cells.append(Paragraph(item, item_style)) # Make columns equal length max_cells = max(len(left_cells), len(right_cells)) left_cells.extend([""] * (max_cells - len(left_cells))) right_cells.extend([""] * (max_cells - len(right_cells))) # Create table data table_data = list(zip(left_cells, right_cells)) # Calculate column widths col_width = (A4[1] - 120) / 2.0 # Create and style table table = Table(table_data, colWidths=[col_width, col_width]) table.setStyle(TableStyle([ ('VALIGN', (0, 0), (-1, -1), 'TOP'), ('ALIGN', (0, 0), (0, -1), 'LEFT'), ('ALIGN', (1, 0), (1, -1), 'LEFT'), ('BACKGROUND', (0, 0), (-1, -1), colors.white), ('GRID', (0, 0), (-1, -1), 0.5, colors.white), ('LINEAFTER', (0, 0), (0, -1), 1, colors.grey), ])) story.append(table) doc.build(story) buffer.seek(0) return buffer.getvalue() # Streamlit UI st.title("πŸš€ Cutting-Edge ML Outline Generator") if st.button("Generate Main PDF"): with st.spinner("Generating PDF..."): pdf_bytes = create_main_pdf(ml_markdown) st.download_button( label="Download Main PDF", data=pdf_bytes, file_name="ml_outline.pdf", mime="application/pdf" ) base64_pdf = base64.b64encode(pdf_bytes).decode('utf-8') pdf_display = f'' st.markdown(pdf_display, unsafe_allow_html=True) st.success("PDF generated successfully!")